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Abstract 

Sound propagation in shallow water is highly dependent on the interaction of the 
sound field with the bottom. In order to fully understand this problem, it is neces- 
sary to obtain reliable estimates of bottom geoacoustic properties that can be used 
in acoustic propagation codes. In this thesis, perturbative inversion methods and 
exact inverse methods are discussed as a means for inferring geoacoustic properties 
of the bottom. For each of these methods, the input data to the inversion is the 
horizontal wavenumber spectrum of a point-source acoustic field. The main thrust 
of the thesis work concerns extracting horizontal wavenumber content for fully three- 
dimensionally varying waveguide environments. In this context, a high-resolution 
autoregressive (AR) spectral estimator was applied to determine wavenumber con- 
tent for short aperture data. As part of this work, the AR estimator was examined 
for its ability to detect discrete wavenumbers in the presence of noise and also to 
resolve closely spaced wavenumbers for short aperture data. As part of a geoacous- 
tic inversion workshop, the estimator was applied to extract horizontal wavenumber 
content for synthetic pressure field data with range-varying geoacoustic properties in 
the sediment. The resulting wavenumber content was used as input data to a per- 
turbative inverse algorithm to determine the sound speed profile in the sediment. It 
was shown using the high-resolution wavenumber estimator that both the shape and 
location of the range-variability in the sediment could be determined. The estima- 
tor was also applied to determine wavenumbers for synthetic data where the water 
column sound speed contained temporal variations due to the presence of internal 
waves. It was shown that reliable estimates of horizontal wavenumbers could be ob- 
tained that are consistent with the boundary conditions of the waveguide. The Modal 



Mapping Experiment (MOMAX), an experimental method for measuring the full spa- 
tial variability of a propagating sound field and its corresponding modal content in 
two-dimensions, is also discussed. The AR estimator is applied to extract modal con- 
tent from the real data and interpreted with respect to source/receiver motion and 
geometry. For a moving source, it is shown that the wavenumber content is Doppler 
shifted. A method is then described that allows the direct measure of modal group 
velocities from Doppler shifted wavenumber spectra. Finally, numerical studies are 
presented addressing the practical issues associated with using MOMAX type data 
in the exact inversion method of Gelfand-Levitan. 

Thesis Supervisor: George V. Frisk 
Title: Senior Scientist, WHOI 
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Chapter 1 

Introduction and Overview 

1.1    Motivation 

Any review of the underwater acoustic or ocean science literature will immediately 

impress upon the reader the importance of acoustics as a tool for understanding not 

only acoustic problems such as propagation and scattering, but many other ocean 

science problems as well, including measurements of ocean temperature and currents, 

monitoring of marine mammal activity, and characterization of different fish species, 

to name a few. Whatever the application, each benefits from increased knowledge 

of the propagation environment. Consistent with this, in a much referenced paper 

by Hamilton[36], a case was made for the importance of geoacoustic modeling of the 

seabed. Hamilton asserts that knowledge of geoacoustic models is basic to the under- 

standing of underwater acoustics. His statement of twenty years ago is particularly 

true now with today's requirement of rapid assessment where complex models based 

on realistic input parameters are used for prediction purposes. In shallow water envi- 

ronments, where the sound field is constantly interacting with the seafloor, knowledge 

of bottom geoacoustic properties is critical to making accurate predictions. It is this 

scenario that calls for a robust means of determining the geoacoustic properties of 

the seafloor. 
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Stratified Waveguide Model 

z = 0 

•-* Source 2 = z 

Figure 1-1: Simple environmental model representing horizontally stratified waveg- 
uide 

1.2     Objectives 

The objective of this thesis work is to investigate methods for inferring the properties 

of the seafloor from spectral measurements of point-source acoustic pressure field data 

in shallow-water environments. The data consist of complex pressure measured on 

synthetic aperture horizontal planar arrays for a point source at constant depth emit- 

ting several discrete tones [31]. A canonical model is represented in Figure 1-1. In 

this context, the spectral representation of the field is given by the depth-dependent 

Green's function versus horizontal wavenumber. As will be shown, the basis for the 

geoacoustic inverse problem is the dependence of the Green's function on the local 

properties of the waveguide. Theory and experiment have confirmed this relationship 

through application of Hankel transform-based methods for extracting the wavenum- 
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ber spectrum for data measured on synthetic aperture line arrays [26] [55]. The work 

described in this thesis differs from previous work in that synthetic apertures are 

formed along arbitrary horizontal paths between source and receiver positions as op- 

posed to being formed along radials at constant bearing. These measurements are 

unique in that they use precision Global Positioning System (GPS) measurements of 

source and receiver buoy positions to create the synthetic aperture used for processing. 

Examination of the point source spectra determined for sub-apertures of these hori- 

zontal arrays yields information about spatial variability in the seafloor. Emphasis is 

placed on extracting modal content and interpreting modal evolution in the context 

of the measurement geometry. Where appropriate, this includes Doppler effects due 

to source/receiver motion on the measured spectra. In this thesis, a procedure for 

the direct measurement of modal group velocity is presented through measurement 

of an observed Doppler shift. Using this result, the effect of Doppler can be removed 

from the wavenumber estimates. Along these same lines, another objective of this 

work is to achieve maximum resolution of discrete wavenumbers given short aperture 

field data to obtain high resolution geospatial maps of wavenumber content. In this 

effort, the use of high resolution spectral estimation techniques are examined as well 

as the effect of sound speed variations in the water column on extraction of closely 

spaced spectral values. 

Given estimates of the point source spectrum, the next objective is to use the 

spectral data as input for the geoacoustic inverse problem. The experiments for 

this work were designed primarily as a means to provide input data to an inverse 

method based on making linear perturbations to a background starting model. This 

approach uses the discrete portion of the point source spectrum given by peaks in 

the Green's functions as input data to the inverse problem. Emphasis is placed 

on examining the applicability of the measurement data obtained on the arbitrary 

horizontal arrays to the perturbative inverse approach. During the course of this work, 

it was suggested that point-source spectral measurements as described might also be 

19 



used as input data to one of the exact methods for geoacoustic inversion that does 

not require perturbations or iterations. Thus, a second inversion approach studied 

is an adaptation of the Gelfand-Levitan method for geoacoustic inversion using the 

point-source spectral data for shallow water. In this approach both the continuous 

and discrete portion of the Green's function are used to obtain the input data for the 

inverse algorithm. It will be shown that from these measurements, it may be possible 

to estimate the reflection coefficient at the water-bottom interface. The input for the 

inversion scheme is then the Fourier transform of the plane-wave reflection coefficient. 

Numerical results will be presented for this case with recommendations made for 

future experiments. 

Clearly, by combining the spectral estimation efforts and the inversion efforts, the 

local nature of the Green's function can be exploited to obtain fully three-dimensional 

geoacoustic inversions. 

1.3    Background 

The history of seafloor characterization in the underwater acoustics community is a 

long one. Many different measurement and analysis techniques have been developed 

through the years to estimate bathymetry, seafloor roughness, and sediment compo- 

sition. In probing the seafloor for its geoacoustic properties, several major classes of 

approaches have emerged. Frisk [27] breaks these classes into four categories that in- 

clude inversion for bottom properties based on specific features, iteration of forward 

models, perturbative inversion, or exact inverse methods. Included in the class of 

iterating forward models are optimization methods such as simulated annealing or 

genetic algorithms. For the measurements and data to be discussed in regard to this 

thesis work, any of the latter three inversion method classes could be appropriate. 

However, of particular interest are the perturbative inverse approach and exact meth- 

ods. It should be noted that there is a bit of overlap in these classifications in that 
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both the perturbative inverse method and the iteration of forward models involve 

iteratively making perturbations to a starting model based on a priori information 

about the environment combined with measured field data. The differences arise from 

the nature of the perturbations, as well as the cost function defined to evaluate the 

results. These differences lead to a substantial difference in the number of iterations 

required and are discussed further in the following section where both approaches are 

categorically referred to as iterative methods. For any of these iterative methods, 

results from an inversion are compared to measured data and the model is perturbed 

again using the comparison information. Iteration continues until the model/data 

comparison falls within an acceptable range of the observed values. Exact methods 

differ from optimization methods in that they do not require a background model 

for determination of the model parameters. These methods are exact in the sense 

that they have either analytic or numerical forms of solution which make direct use 

of the field data in the reconstruction of the geoacoustic properties. Consequently, 

these methods do not suffer from any reliance on the approximations made for the 

forward-problem model, or the sometimes non-unique nature of the perturbed back- 

ground model solutions. Following is a brief summary of previous work done using 

the two types of methods. 

1.3.1    Iterative Methods 

Much of the recent geoacoustic inversion literature has focused on algorithms which 

seek to determine a set of model parameters which minimize the mismatch between 

measured and simulated field data. This problem becomes increasingly difficult and 

computationally intensive as the number of model parameters to be determined is 

increased. Further complicating the problem is the presence of local minima inher- 

ent in the inverse problem. Rajan et al. [62] [66] employed several different iterative 

approaches to perturb a starting model using measurements of the complex pres- 

sure field as input data. Using short aperture Hankel transforms to obtain eigenvalue 
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information, Frisk et al. [26] used a perturbative-inverse algorithm to obtain compres- 

sional wave speed profiles for two adjacent, but geo-acoustically distinct, regions in 

Nantucket Sound. Ohta and Frisk[54][55] used a short-window sliding transform and 

iteration of forward models to further extend these methods to the range-dependent 

case. The perturbative inversion methods used by these authors were based on linear 

or quasi-linear inverse algorithms. To ensure linearity, the parameter search space 

was limited to small perturbations around the background model. Further, the op- 

erator on the parameter that gives an estimate of the data is assumed to be either 

monotonic, or Frechet differentiable, a condition that allows the linearization of a 

nonlinear function [64]. These requirements ensure that the inversion algorithm trav- 

els downhill and will arrive at the global minimum for the cost function as determined 

by linearizing the problem around the assumed background model. The benefits of 

the perturbative inverse method include the following: the search parameter space 

derived from the data limits the results to realistic values for the seafloor; the linear 

inverse equations allows for the determination of the variance and resolution of the 

parameter estimates; and the results do not depend on and do not require multiple 

full forward modeling runs. A limitation of these methods are their sensitivity to 

the starting model and the potential for arriving at at a non-unique solution due 

to minimizing the cost function based on an incorrect starting background model. 

To overcome these shortcomings, other nonlinear approaches have been investigated 

which allow a more thorough search of the model parameter space by employing ran- 

dom processes to perturb the starting model. The random nature of the perturbation 

makes them less sensitive to the starting model and avoids trapping in the local min- 

ima along with removing the monotonic requirement on the data. However, because 

of their random nature, global methods tend to converge more slowly and are more 

computationally expensive. Further, because global methods require repeated appli- 

cation of forward modeling runs, they are dependent on the forward model used. Two 

of the more popular global methods that have been used successfully in geoacoustic 
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inversions are simulated annealing (SA) and genetic algorithms (GA). SA is based on 

the thermodynamic annealing principles governing crystal growth and seeks a mini- 

mum in parameter space through random perturbations of the model with acceptance 

of uphill steps probabilistically decreasing as time increases. Kuperman et al. [45] 

devised a fast SA algorithm to invert for wave-speeds and attenuation for slightly 

range-dependent environments. Collins et al. [15] used simulated annealing based on 

a full-field parabolic equation model to invert for range- and depth-dependent bottom 

geoacoustic parameters. GA are analogous to genetic evolution where perturbations 

to a model population are related to genetic crossover, or recombination, and muta- 

tions resulting in a new model of a given fitness. Models with high fitness, indicating 

a low mismatch between parent and offspring, are kept, while low fitness models are 

rejected. Different probabilistic models can be introduced into the algorithm to fur- 

ther refine the fitness criterion for the selection of parents in the formation of new 

offspring. GA was first used on synthetic data by Gerstoft[35], and then used on real 

broadband acoustic data by Hermand and Gerstoft [39] to determine bottom sedi- 

ment properties and layer thicknesses. Combining the quick convergence properties 

of the local approaches with the full parameter space searches of global methods, 

Fallat and Dosso[23] have devised a hybrid approach based on downhill simplex and 

simulated annealing to invert for geoacoustic properties. Also seeking to minimize 

the mismatch between measured and simulated data, their method was shown to con- 

verge demonstrably faster than either a local or global method alone for a test case 

where the geoacoustic parameters were known. 

Each of the inversion methods described above has its advantages and disadvan- 

tages. The computational expense of the various methods will be addressed in a 

forthcoming report from a recent workshop on geoacoustic inversion techniques. The 

report should provide a good summary of the computational requirements and effi- 

ciency of various inverse methods [13]. Putting the other differences aside, the work 

is this thesis was motivated by experimental work designed to provide input data for 
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a perturbative inverse method. Therefore, much of the development in this thesis is 

placed in the context of perturbative inversion. 

1.3.2    Exact Inverse Methods 

Much of the exact inverse work in determining geoacoustic properties considered for 

this thesis is found in the geophysical literature and is summarized by Merab[50]. The 

geophysical problem of interest is largely based on physics and mathematics in the 

form of the solution to inverse problems of quantum scattering theory. The connection 

between scattering theory and the acoustic problem is made by showing the geoacous- 

tic inverse problem to be equivalent to determining the potential in one-dimensional 

inverse scattering problems for the Schrödinger equation. Of particular relevance to 

the solution of this problem are the methods of Gelfand and Levitan[34], and the 

trace methods formulated by Deift and Trubowitz[17] (DT). The formulation of these 

two solution alternatives begin with equivalent equations, boundary conditions, and 

assumptions. 

The major difference between the two methods of solution is in the choice of input 

data for the inversion. The DT trace method uses the plane-wave reflection coefficient 

as a function of wavenumber as input data for the simultaneous solution of a coupled 

pair of equations. The solution is given in terms of a potential q(z) that is directly 

related to the reflection coefficient. It will be shown in chapter 2 that the plane-wave 

reflection coefficient is directly related to the sediment properties thus establishing 

the relationship between the potential and the sound speed profile in the bottom. In 

its most general form, the solution proceeds with two unknown functions including 

the potential, q(z), and f{z,k) which is a solution to a one-dimensional Schrödinger 

equation of the form 

f" + (k2-q)f = 0. (1.1) 

The above equation is written and solved in terms of the function / alone by using 
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the following "trace formula" to eliminate q(z) in equation (1.1), 

1%  f00 

q(z) = - kR(k)f2(z,k)dk (1.2) 

where the reflection coefficient, R(k), is the input data and k is the wavenumber. 

The trace method was first applied to the shallow-water ocean acoustic problem 

by Stickler and Deift[77]. They showed how to recover the sound speed in a stratified 

ocean where the frequency was chosen so that no proper modes were excited. As 

input data to the inversion they required measurements of the normal derivative 

of a harmonic point source pressure field at the pressure-release surface. Stickler[78] 

removed the requirement of measuring the normal derivative of pressure, while keeping 

the restriction of no trapped modes, to recover the sound speed and density profiles 

in the sediment using trace methods. He used measurements of the sound field versus 

range at fixed depth for two distinct frequencies as input data. 

In contrast to the trace methods which use the reflection coefficient directly, the 

Gelfand-Levitan (G-L) approach uses the Fourier transform of the reflection coefficient 

as input data to a Fredholm integral equation of the second kind. Merab[50] studied 

several different solution methods to the G-L integral equation for a deep water 

experiment. The reflection coefficient is obtained by measuring both the direct and 

bottom reflected field for a single-frequency point source in deep water and applying 

the Hankel Transform inversion technique described in [25]. The Fourier transform 

of the measured reflection coefficient is then used as the input for the following G-L 

type integral equation: 

K(z,y) + R{z + y)+ [Z   R{z' + y)K(z,z')dz' = 0,    y < z, (1.3) 
J — oo 

where R(z) is the Fourier transform of the reflection coefficient R(k), and the kernel, 

K(z,z), is sought.  Given K(z,z), there exists a simple relation to find the desired 
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potential q(z). 

«M = 2^. (i-i) 

Merab illustrates the application of this approach using synthetic data for a known 

geoacoustic environment, taking care to avoid having trapped modes in the sediment. 

Each of the above methods allows for the presence of bound states or trapped 

modes in the solution of the inverse problem. However, in each of the cited examples, 

cases were studied where bound states were not present. This was done because the 

bound states further complicate the mathematics and also require additional mea- 

surements to be made. Further, in the shallow-water environment of interest, it is 

often very difficult to measure the plane-wave reflection coefficient due to the presence 

of multiple reflections between the surface and the bottom. It is believed that this 

problem is compounded by the difficulty in making accurate measures of the phase 

of the complex pressure experimentally [64]. In the Modal Mapping Experiments 

(MOMAX) described in chapter 4, it will be demonstrated that much progress has 

been made in this regard and the determination of the reflection coefficient for real 

data will be revisited. Recently, McLaughlin and Wang [51] have suggested a way 

of applying trace methods to obtain bottom sediment properties from shallow water 

data. In this formulation, trapped modes propagating in the water column are treated 

as bound states in the inverse problem and the potential includes the sound speed in 

the water column. McLaughlin and Wang use the depth-dependent Green's function 

obtained by Hankel transforming measurements of the complex-pressure field as their 

starting point. A straightforward relation between the Green's function and the re- 

flection coefficient is applied to obtain the input data for the inversion. To account 

for the discrete spectrum present in the Green's function as it applies to the trace 

formula, McLaughlin applies a Darboux transform [17] to systematically remove the 

bound states from the problem. The result of each transform step yields a modified 

eigenvalue equation with one less bound state. All other bound states remain un- 

changed, and a new potential results. The Darboux transform is applied iteratively 
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for each of the bound states and information is stored at each step. After removing 

all the bound states from the original eigenvalue problem, the inversion proceeds as 

if no bound states were present. A modified reflection coefficient is found for the now 

continuous spectrum and used as input data to the trace formulas to solve for an 

intermediate potential. The full potential is obtained from the intermediate result by 

reversing the Darboux transformation and adding the bound state information back 

in. Although not considered further in this thesis, the Darboux transform appears 

of interest for removing the effects of trapped modes in the sediments avoided by 

Merab. Further discussion of the Darboux transform for potential application to this 

problem can be found if Deift and Trubowitz [17] as well as Beals et al. [6]. 

1.4    Experimental Approach 

In the next section, the concept of wavenumber evolution is illustrated using a nu- 

merical example. Results show the dependence of horizontal wavenumber on local 

waveguide properties. Following the numerical results, the experimental method for 

extracting local wavenumber content is briefly introduced. 

1.4.1    Numerical Results 

As stated, the input data for both the perturbative inverse method and Gelfand- 

Levitan method is the spectral data for the point source pressure field. The under- 

lying premise is to measure the spatial variability of the wavenumber spectrum for 

a point source in a stratified medium to recover the geoacoustic properties of the 

seabed in three dimensions. As part of this work, both at-sea and numerical exper- 

iments have been conducted to test these concepts. Much of the work was driven 

by the notion that perturbative inversion methods would be used to infer sediment 

properties using eigenvalue information only. Thus, methods were investigated for 

extracting and mapping the wavenumber spectrum of the normal mode field for com- 
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Figure 1-2: Three-dimensional environmental model. Sound speed profile is shown in 
upper left. Cross-range and down-range bathymetry profiles are shown in right upper 
plots. Full 3-D model is shown in bottom plot with source located at 30 meters depth 
in center of model. Sediment sound speed profile tracks the bathymetry. 

plex shallow-water waveguide environments whose acoustic properties vary in three 

spatial dimensions[7]. For the waveguide depicted in figure 1-2, 50 Hz synthetic pres- 

sure data was generated using the KRAKEN normal mode program [59] as shown 

in figure 1-3. Short-aperture sliding window transforms were applied along radials 

to obtain estimates of the Green's function g(kT,r,6). Estimates where made using 

a classical spectral estimator based on the FFT with a Hanning window applied to 

the data for each aperture. Wavenumbers corresponding to the first two modes were 

extracted and plotted as a function of range and theta to create the modal maps in 

Figure 1-4. These maps represent the ideal case where modal information is obtained 
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(ig4      Pressure Field for Three-Dimensional Waveguide 
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Figure 1-3: Plan view of 50 Hz Nx2D acoustic pressure field generated using KRAKEN 
for 3-D environmental model. 
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Figure 1-4: Plots of wavenumber evolution with range and azimuth for 3-D environ- 
ment. Top plot is mode 1 and bottom is mode 2 for 50 Hz field. 
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on a fully populated spatial array. The wavenumber estimates obtained represent 

the true wavenumber values well, but with low spatial resolution due to the length 

of the aperture used at each range step. To improve the spatial resolution of the 

spectral measurements, a portion of this thesis investigates a high-resolution spectral 

estimation technique to obtain modal wavenumber information using short aperture 

data [9]. This will be discussed in detail in chapter 3. 

1.4.2    Modal Mapping Experiments 

To test these methods on real data, the Modal Mapping Experiments (MOMAX) 

were conducted in March 1997 and again in October 2000 off the New Jersey coast 

[29] along with MOMAX II held in February 1999 in the Gulf of Mexico [47]. In these 

experiments, drifting buoys equipped with a single hydrophone, GPS navigation, and 

radio telemetry were used to measure the acoustic field from a point source emitting 

several discrete tones in the frequency range 20-475 Hz. High-resolution measure- 

ments of the sound field using several buoys were used to create two-dimensional 

synthetic aperture horizontal arrays. Modal maps were generated for both single re- 

ceiver arrays, and for arrays formed by merging data from two calibrated receiving 

systems[8] [10]. Figure 1-5 shows one result from MOMAX comparing the measured 

field to a synthetic field generated using the recovered sound speed profile obtained 

using a perturbative inversion algorithm [62] as input data for an acoustic propa- 

gation model. These results illustrate the utility of the measured Green's function 

spectrum for characterizing the spatial variability of the acoustic waveguide and in- 

ferring its geoacoustic properties. Further, the phase of the measured acoustic data 

from MOMAX appears to be very robust and shows promise for extracting the re- 

flection coefficient from the depth-dependent Green's function. For the case of no 

trapped modes in the sediment, these measurements may be used for inversion using 

the Gelfand-Levitan method. 
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Figure 1-5: Model data comparison for MOMAX experiment at 75 Hz 

1.5    Outline 

Chapter 2 presents an overview of the theory of wave propagation in a horizontally 

stratified shallow-water waveguide. The point-source solution is given in terms of the 

depth-dependent Green's function. The relationship between the Green's function 

and plane-wave reflection coefficient of the bottom is given highlighting the Green's 

functions dependence on bottom properties. Doppler effects on the Green's func- 

tion due to source/receiver motions is also examined. The final part of the chapter 

describes the inverse problem. The perturbative inverse method is reviewed as appli- 

cable to the MOMAX experiments. Finally, the Gelfand- Levitan inverse method is 

reviewed with emphasis placed on applications using real data. 

Chapter 3 presents data and results using synthetic data generated for range- 

dependent shallow-water environments. Data was provided as part of an ONR/SPAWAR 

sponsored inversion techniques workshop [40] that occurred in May, 2001.  A high- 
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resolution wavenumber estimator to extract range-dependent spectra was implemented 

for this work. In this chapter, the estimator will be described and its statistical char- 

acteristics examined for application to the MOMAX data. A related study will be 

described that examines the effect of sound speed perturbations in the water column 

on wavenumber measurements. 

Chapter 4 describes in detail the modal mapping experiments. An overview of the 

experimental configuration is given along with a description of the data processing 

scheme. An overview of the operational environment for each experiment is then 

given along with supporting measurements of the water column and bathymetry. 

Finally, some example measurements and preliminary analysis of the MOMAX data 

are discussed. 

Chapter 5 presents analysis of the MOMAX experimental data. Modal evolution 

is examined for the tracks created by the drifting buoys. Analysis is presented for 

the case of a single propagating mode where modal evolution can be determined 

analytically. For the case of a moving source, a method for measuring the group 

velocity is presented. MOMAX data are inverted using the perturbative method to 

obtain compressional wave speed profiles in the sediment. Finally, applicability of the 

MOMAX data to the Gelfand-Levitan inversion method is discussed with suggestions 

for further work. 

The final chapter summarizes the present work with emphasis placed on new 

contributions. Suggestions for future efforts conclude the chapter. 

33 



Chapter 2 

Review of Sound Propagation in a 

Shallow-Water Waveguide 

2.1    Forward Problem 

The governing equations for sound propagation in shallow water are reviewed for the 

case of a horizontally stratified medium. The shallow water model, as shown in figure 

1-1, is comprised of a stratified fluid layer, with sound velocity and density both 

functions of depth, overlying a seabed located at depth zb made up of multiple layers 

whose properties vary with depth. 

The starting point is the full time-dependent acoustic wave equation in three- 

dimensions for a time-harmonic source with radial frequency w, written [28], 

p0(r)V 1    VP(r,«) 
Po{r) 

1&P^=T_M (21) 

c2(r)     at1 

where r represents the spatial coordinates (x,y,z), r0 is the source position, t is 

time, <5(r) is the Dirac delta function, and V = -j^i + -^j; + -§-zk. The density p0 and 

sound speed c are functions of position and suggest the influence of the propagation 

environment on the solution to the wave equation. Using the following definition for 
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the Fourier transform in going from the time domain to the frequency domain, 

1      r+°°         . , 
F.T.{x{t)} = X{u)=                  x{t)elultdt,                         (2.2) 

V 27T J-oo 

and applying it to (2.1), the time-independent Helmholtz equation results, 

Po(r)V • + A;2(r)p(r) = -47r£(r-r0),                    (2.3) 

Here, angular frequency is defined by w — 2irf, for frequency /, and k(r) = o>/c(r) is 

the total acoustic wavenumber. 

The wave equation can be simplified for our case by considering the solutions 

in regions of constant density.  For a stratified waveguide where density is constant 

within each layer, equation (2.3) takes the form 

[V2 + A;2(r)] p(r) - -4nö(x)6(y)6(z - z0),                          (2.4) 

for the source located at t he origin of the (x,y)-plane and at a depth z0. 

2.1.1    Point-source spectrum and plane-wave reflection coef- 

ficient 

For a waveguide with properties that vary only as a function of depth, the solu- 

tion to (2.4) proceeds by reducing the equation to one in the depth coordinate only. 

Appropriate boundary conditions are then applied at the air-sea and water-bottom 

interfaces. Defining the two-dimensional inverse Fourier transform operator in spatial 

coordinates by [28], 

1       r+oo    r+oo 
l.T.T.{f{x, y)} = F(kx, ky) = — /      f{x, y)e-^x+^dxdy, (2.5) 
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and applying it to both sides of (2.4), the following equation results, 

d2 

dz2+k kx       ky g(kx,ky;z,z0) = -2S{z - z0). (2.6) 

Here kz is the vertical wavenumber defined as kz = Jk2 - kx - k2, with kx and ky the 

horizontal wavenumbers with respect to a Cartesian coordinate system in wavenumber 

space. In the above, it is required that Im{kz} > 0 in order to ensure the field is finite 

as z ->• oo. The solution g(kx, ky; z, z0) is the depth-dependent Green's function or 

point-source spectrum for the depth-separated wave equation. The Green's function 

is related to the acoustic pressure field through the conjugate Fourier transform pairs 

given by: 

1 /-OO        rOO 

p(x, y; z,Zo) = -;- /     9{kx, ky; z, z0)e^
x+k^dkxdky, (2.7) 

g(ktt ky; z,z0) = ± /    p{x, y; z, z0)e-
J(fc^+fc^^xrfy. (2.8) 

ZTT J-OO J-OO 

The solution to the depth-dependent equation (2.6) is obtained by incorporating 

into the total solution, the independent solutions uT(kx, ky; z) and Uß(kx, ky; z) which 

satisfy the top and bottom boundary conditions, respectively. The general form of 

the depth-dependent Green's function satisfying both boundary conditions can be 

written, 

/;    ;           \        ynr\kxiky;z<)uB\kx,ky\z>) ,„ Qs 
g(kx,ky;z,z0) = —— ;    0 < z < zb, [Z.U) 

where z< = min(z,z0), z> = max(z,z0) and W(z0) is the Wronskian, given in terms 

of the solutions UT and uB evaluated at the source location by, 

W(z0) = uT(z0)u'B(z0) - u'T{z0)uB(z0). (2.10) 

For an isovelocity water column, the solutions UT and uB can be expressed in 
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terms of up-going and down-going plane waves along with their boundary interactions 

characterized by the plane-wave reflection coefficients RT{K) and RB{kr) at the top 

and bottom interfaces. Expressing the reflection coefficients as a function of horizontal 

wavenumber, kr, the two independent solutions are given by, 

uT(kr- z) = A [e~ik>z + RT{kr)e
k*z] , 

uB(kr;z) = B[e-ik*z-RB(kr)e
k>z], 

for which the Wronskian becomes, 

(2.11) 

(2.12) 

W = 2ikzAB{l - RTRBe2ik*Zb), (2.13) 

where A and B are arbitrary constants and kr — Jk% + k*. Substituting these expres- 

sions into (2.9), the depth-dependent Green's function for a shallow water waveguide 

is 

g{kr; z, z0) 
i {e^l2-2"! + RT(kr)e

ik*tz+z°) + RB{K)e2ik^ [e-*"M*+*0 + RT(kr)e-
ik^z-z^]} 

kz[l-RT(kr)RB{kr)e
2ik^} 

(2.14) 

This expression for the Green's function is a spectral representation of the propagating 

field in terms of horizontal wavenumber and shows explicitly its dependence on the 

boundary conditions of the waveguide. For the ocean acoustic problem, the air-sea 

interface is approximated by a pressure-release surface with boundary condition given 

by RT = —1. The depth-dependent Green's function is then an explicit function of 

the plane-wave reflection coefficient at the water-bottom interface. For example, for 

a stratified seabed with multiple layers, as illustrated in figure (2-1), Rb(kr) can be 

written as a sum including the plane-wave reflection coefficients calculated between 

adjacent layers [44], and a phase term that depends on the layer depths. 
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where R^ is the reflection coefficient between two adjacent layers given by 

Rij — 
PjKzi + Pi^zj 

(2.16) 

From (2.15) it is clear that RB depends solely on the sediment properties of the 

bottom. Consequently, measurements of the bottom reflection coefficient are often 

used as a basis for the geoacoustic inverse problem such as in the trace methods and 
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the method of Gelfand-Levitan previously discussed. In the stratified shallow-water 

case, the relationship between Rb(kr) and g(kr) given by (2.14) shows the explicit 

dependence of the spectrum on the bottom properties. This relationship is the basis 

for geoacoustic inverse problems using point source acoustic field data in shallow- 

water. Of particular interest for the inverse problem is the discrete portion of the 

wavenumber spectrum g given by (2.14) when the denominator goes to zero. Making 

the substitution RT = — 1, 

1 + RBe2ikzZb = 0. (2.17) 

It will be shown that this equation takes the exact form of the characteristic equation 

for the inhomogeneous depth-dependent wave equation for a waveguide with pressure- 

release top and horizontally stratified bottom [28]. Solutions to (2.17) can be used as 

input data to the perturbative inverse methods. 

2.1.2    Cylindrical coordinates: The Hankel Transform 

A more natural representation of (2.7) for a point source in a stratified waveguide is 

obtained by transforming the problem to cylindrical coordinates. For an axisymmetric 

problem, transformation to cylindrical coordinates has the effect of reducing the two- 

dimensional conjugate Fourier transform pair relationship of (2.7) and (2.8) to the 

one-dimensional Hankel transform pair relationship with conjugate variables kr and r. 

The Cartesian/cylindrical transform relations in the spatial and wavenumber domains 

are given by the following identities. 

kx = kr cos a, x = r cos ß, 

ky = kT sin a, y = rsinß, (2-18) 

kr = \jk2
x + k2

y,       r = s/x2 + y2, 

where the angles a and ß are as shown in figure (2-2).   Using these transforms, 
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Figure 2-2: Angle definitions for coordinate transforms in Cartesian and wavenumber 
space 

equation (2.7) becomes 

roo    rz-n 
p(r; z,z0) = —        /    g(kr; z, z0)e

ik^cosa-^krdkrda. (2.19) 
Z7T JO      JO 

Using the integral representation for the zero-order Bessel function J0, 

Uz) = 7T /     elz{cOSQ~0)da, 
2ir Jo 

(2.20) 

equation (2.19) becomes a zero-order Hankel transform which makes up one half of 

the conjugate transform pair given by, 

roo 
p(r;z,z0) = /    g(kr;z,z0)J0(krr)krdkr, 

Jo 

roo 
g(kr;z,z0) = /    p(r;z, z0)J0{kTr)rdr. 

Jo 

(2.21) 

(2.22) 

Using the following identity relating the Bessel function to the Hankel function, 

J0{krT)=
l-[H£\krr) + HV{krr)], 
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the one-sided integral of (2.21) can be written as the two-sided integral [28] 

1   f°° 
p(r;z,z0) = -        g(kr;z,z0)H^>(krr)krdkr. (2.23) 

Z J— oo 

This form is particularly convenient when approximating the Hankel function by its 

asymptotic form for krr 3> 1 for which the above integral and its inverse take the 

form of Fourier transforms. Using 

H^\krr) ~ J-^-e^1"^    krr > 1, 
y TTKj-T 

in (2.23) gives, 
D-i7r/4    ^oo 

/2nr j-oo 

with the inverse, 

p(r;z,z0) == /     g(kr;z,z0)Jkre
lkrTdkri (2.24) 

v27rr J-oo 

gJf/4       ,-oo 

g(kr; z, z0) ~ /.oo^'z' zo)Vre-lkrrdr. (2.25) 

These expressions are easily incorporated for use on measured acoustic field data 

where the wavenumber spectrum can be extracted using methods based on the Fast 

Fourier Transform (FFT) or other computational techniques commonly used in signal 

processing. 

Equations (2.24) and (2.25) are often used as the basis for waveguide characteri- 

zation and geoacoustic inversion techniques based on spatial measurements of point 

source acoustic wave fields. 
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2.1.3    Normal Mode Representation 

An alternative solution to the standard wave equation given by (2.4), and written in 

cylindrical coordinates as [28] 

V2 + Jfc2(r)] p(r) = -4n-y5{0)S(z - z0), (2.26) 

is obtained through the assumption of a separable solution of the form, 

p{r,z) = ,£an{^n{z)Rn{r), (2.27) 
n 

where r = (r,6,z), Rn(r) and tyn{z) are radial and depth eigenfunctions and an(z0) 

is amplitude. The important result here is that for constant-density layers, the \I>n 

satisfies the eigenvalue equation 

^ + ^nW=0;    kln = k*{z)-k*, (2.28) 

along with its boundary conditions, and kn is the eigenvalue for the mode n. For a 

homogeneous fluid layer bounded from above and from below by horizontally strat- 

ified media with plane-wave reflection coefficients RT and RB, respectively, the ho- 

mogeneous solution to the depth equation can be written in terms of up-going and 

down-going plane waves. 

V(z) = tfd(z) + Vu{z) = AeikzZ + Be-ik'\ (2.29) 

where A and B are arbitrary constants determined by the boundary conditions. Using 

this expression, the reflection coefficients at the top and bottom surfaces can be 

written as 
_ Vd(z)        _ A 

RT-%XZ)1=°-B (2-30) 

42 



RB = P^1\   =äe-2ikZZb (231) 
Vd(z)      b     A v      ' 

These two equations can then be combined to yield the characteristic equation for 

the depth dependent equation given by 

1 - RTRBe2ik*Zb = 0. (2.32) 

Recalling equation (2.14), this is exactly the form of the denominator for the shallow- 

water depth-dependent Green's function given in equation (2.17) for RT — —1. Poles 

of the Green's function thus correspond exactly to eigenvalues for the depth-dependent 

eigenvalue equation. 

Following the treatment of Frisk [28], the radial component of the solution (2.27) 

can be shown to be a solution to Bessel's equation with a line source driving term 

and has the form, 

Rn{r)=mH^\knr). (2.33) 

The modal representation of the acoustic pressure field can then be written, 

oo 

p{r, z) = in £ an{z0)yn{z)H£\knr). (2.34) 
n=l 

Finally, solving for an(z) for z = z0 using the closure relation for eigenfunctions of a 

proper Sturm-Liouville system as, 

an(z0) = %(z0)/p(z0), (2.35) 

and the modal representation becomes, 

m    °° 
P^Z^ = ^7T 2 K(zo)*n(z)H?\knr). (2.36) 

P\zo) n=i 
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In the far field, the asymptotic form of the Hankel function can be used to obtain. 

\/27rpi7r/4  °° eiknT 

p(r'z) ~ ^rr £ Ki^niz)-^. (2.37) 
P\Zo)        „-1 W 

2.1.4    Range-Dependent Modal Representation 

In the previous development of the modal solution to the depth-dependent problem, 

a range-independent medium was assumed. Pierce [57] first introduced the range- 

dependent formulation for normal modes where he assumed small variations in the 

propagation medium with range and that individual modes do not transfer energy 

between one another. Thus, by representing the solution at any given range as a sum 

of local modes, where the modes satisfy the local boundary conditions, the adiabatic 

mode formula can be derived and is given by, 

P\z°>        n=i yjlo kn(r')dr' 

where the integral over dr in the denominator of the mode sum has been included to 

ensure reciprocity between source and receiver. Through this formulation and appli- 

cation of the transform relations between the depth-dependent Green's function and 

the complex-pressure field, range-dependent spectra can be extracted by performing 

the wavenumber integral over local apertures of finite length. 

It should be noted that although adiabatic mode theory is a convenient way to rep- 

resent the range-varying nature of the local modes for a spatially varying waveguide, 

it is not a necessary condition for the extraction of range-dependent spectra. It will 

be demonstrated that effective wavenumber estimates can be obtained for regions of 

locally range-independent environments bounded by regions of the environment where 

adiabatic mode theory does not apply and mode coupling occurs. Similarly, for the 

case of weak internal waves in a range-independent waveguide, effective estimates 

of the propagating modes can be made where mode coupling occurs.   In this case 
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it will be shown that the higher order modes are relatively stable indicating range- 

independent bottom properties and that energy transfered amongst the lower-order 

modes is due to range-dependence in the water column. 

2.1.5    Effects Due to Source/Receiver Motion 

In the MOMAX experiments to be described, the source/receiver geometry was de- 

pendent on the drift tracks of the individual buoys and/or whether the source was 

moored or being towed. As such, any effect these configurations might have on the 

measured wavenumber spectra should be addressed. In the typical range separation 

experiment, it has been recognized that towed source motion imparts a shift in the 

measured wavenumber spectrum. Rajan et. al. [67] corrected for this effect in mea- 

surements made in the Hudson Canyon area of the Atlantic Ocean, where a source 

was towed along a radial at 1.5 m/s. Hawker [38] and Schmidt and Kuperman [73] 

give detailed analyses of the moving source problem and derive independent expres- 

sions for the expected Doppler shifts. Each of their methods will be reviewed here 

and applied to the MOMAX measurements in a following chapter. 

Hawker treats the case for a source moving along a constant trajectory with con- 

stant speed past a stationary receiving array. For the geometry in Figure 2-3 he 

derives a modal solution to the wave equation that includes the geometry and source 

motion. Through his analysis, he arrives at a modal solution which depends on source 

velocity and angle to receiver along with modal group velocity. 

pM „ ^11 WÄIP \iKR h _ «„„,)], (2.39) 
P(

Z
O)      £i y/k^R L V V9

n )\ 

where R and 6 are the slant range and angle between source and receiver, k°n is 

the modal eigenvalue for no source motion, and v9
n is the group velocity of mode n. 

Comparing the result of Hawker given by (2.39), to the mode sum for a stationary 

source given by (2.37), the horizontal wavenumbers in the moving source problem are 
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Figure 2-3: Source/Receiver geometry considered by Hawker for moving source prob- 
lem [38]. 

shifted by an amount equal to the ratio of the source speed to modal group velocity. 

For the geometry in figure 2-3, the shifted wavenumbers are given by, 

k*n ~ kn (1 - ^sinOj (2.40) 

A later paper by Schmidt and Kuperman [73] treats a similar problem, but allows 

for more general source/receiver geometry. In their analysis, the source and receiver 

are constrained to the same horizontal plane, but can move with constant velocity at 

arbitrary angles with respect to one another as illustrated in figure 2-4. Under these 

conditions, and assuming a spatially independent horizontally stratified medium, the 

spectral and modal representations of the pressure field are derived. The Green's 

function is shown to be a solution to a depth-dependent wave equation as in the 

stationary case of (2.6) but evaluated at a Doppler shifted frequency given by 

OJ* = u + kr • vs, (2.41) 
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Figure 2-4: Geometry used by Schmidt and Kuperman for analysis of Doppler shifts 
due to source/receiver motions [73]. 

where vs is the source velocity. The time-domain solution to the wave equation for 

a moving source is then shown to be given in terms of a depth-dependent Green's 

function that depends on the source motion. The receiver motion is introduced inde- 

pendently and is shown to introduce a frequency shift in the exponential term of the 

time-domain solution, but not in the integration kernel. For both a moving source 

and moving receiver, the time-domain solution to the wave equation can be written 

as [73] 

p(r0 + vrt,z,t) ~ -4= fg(kr,z;uj0 + kr • Vs)e-i[K+kr-(vs-vr)]«-kr.r0]d2kr)    ^ ^ 
o\/2ir J pV2n 

where the receiver is moving with a velocity vector vr given by r = r0 + vrt. This 

result of Schmidt and Kuperman shows that the effects of moving sources and re- 

ceivers is not reciprocal. Only source motion causes a Doppler frequency shift in the 

propagating modes of the field for a harmonic source, while both source and receiver 

motion contribute to the Doppler wavenumber shift in the phase term. In analysis 

of the experimental data for this work, observations of the modal shift predicted by 

these models will be explored and a method for extracting the group velocity directly 
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from measurements considered. 

2.2    Inverse Problem 

The preceding sections describe the forward problem for predicting acoustic propaga- 

tion as a solution to the depth-dependent wave equation given the boundary condi- 

tions. The inverse problem of interest is to determine the properties of the bounding 

media through measurements of the propagating acoustic field. The data used in 

the inverse methods to be described is the spectral representation of the propagat- 

ing acoustic field. It was shown in equation (2.14) how this representation contains 

information about the bottom properties of interest. 

2.2.1    Perturbative Inversion 

The perturbative inverse method is an iterative method that is based on making 

small perturbations to a starting background model. Here, the formalism of Rajan et 

al. [62] is followed for formulating the problem as a Fredholm integral equation that 

can be solved using linear inverse theory. 

The starting point is the solution to the depth-dependent wave equation given 

a predetermined environmental model. The normal mode solution for the initial 

problem, assuming a piecewise constant density profile is written, 

(Ä + km{z)) ¥™{z) = *S)2*^' (2-43) 

where, 

k{0\z) = u/c0{z) (2.44) 

is the wavenumber for the background sound speed profile c0(z), ^^(z) is the mth 

normal mode function, and k$ is the mth mode eigenvalue for the background prob- 

lem. Given this model, a perturbation in the background sound speed model by Ac(z) 
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gives the perturbed wavenumber, 

k(z) = u/[c0{z) + Ac{z)}. (2.45) 

This perturbation in wavenumber yields a corresponding perturbation to the eigen- 

values that when linearized can be expressed by, 

A*ra = (2fcS))-1(*g)|ff|*g)>> (2.46) 

where brackets denote integration over depth, and H is the wavenumber perturbation 

squared and linearized. 

H   =   Ak2{z) = k2{z)-k^2(z) 

^   -k^2(2Ac/c0)    for Ac/c0 « 1. 

(2-47) 

Substituting equation (2.47) into (2.46) and expressing the depth integral indicated 

by the brackets explicitly, the mode number perturbations can be written as the 

integral equation, 

Ak™ = IM rPÖl(z)\¥^(z)\2k^(^)^ldz. (2.48) 
Km   J0 Co\Z) 

In this form, a given small perturbation in the background sound speed profile results 

in a small change in the modal eigenvalues. The iterative perturbative inversion 

method thus makes small perturbations to the background sound speed profile and 

compares the resulting eigenvalues to the measured input values. The background 

profile is updated iteratively until the eigenvalues from the updated profile agree with 

the measured input data. 

Rajan et. al. [62] details three methods for solution of the integral equation given 

by (2.48) from which the regularization method is shown here. This method applies a 
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smoothness constraint on the solution of the integral equation by requiring the second 

derivative of the sound speed to be continuous across layer interfaces in the sediment. 

The smoothness measure thus stated is defined as, 

^»-jfP^)'*. (-) 
Using the above constraint, the integral equation (2.48) is discretized and recast as 

an augmented least-square problem with the objective of minimizing a cost function 

given by the squared difference of Akm as given below. Input data for the problem 

is the difference between measured eigenvalues as determined by taking the Hankel 

transform of complex pressure and the eigenvalues calculated for the background 

model. The data is a vector, d, whose length is determined by the number of modes 

with elements given by 

dt = Akm = km- ku (2.50) 

where km are the measured eigenvalues and kt are the mode eigenvalues for the back- 

ground problem. The unperturbed values in the integral equation (2.48) can be 

expressed as a matrix, G, with elements, 

Gi^—^W (2-51) 

where i and j refer to mode number and layer depth indices, respectively. The 

smoothness constraint is then expressed by the double difference equation given by, 

5(Ac) = £(Aci+1 - 2ACj- + Acj_i)2 = AcTHAc, (2.52) 
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with 

H 

-2    1      0    0    0    0 

5     -4     1 

-4    6     -4 
(2.53) 

0      0      0      0     1-21 

In the above, S is a vector of length depending on the number of depth layers the 

problem has been discretized with, G is an n x m matrix corresponding to the number 

of modes and number of layers. The solution is then found by determining the Ac 

that minimizes the following equation for / given by 

I = AAcTHAc + (d - GAc)T(d - GAc), (2.54) 

where A is a Lagrange multiplier representing the amount of smoothness applied. 

Differentiating (2.54) with respect to each element of Ac, the problem takes the form 

Ac = (GTG + AH)-1GTd. (2.55) 

In the above, when A = 0, no smoothness constraints are applied and the equation 

reduces to the standard least square solution for Ac given by 

Ac = G~1d. (2.56) 

Thus stated, for a given A&m, the minimization problem is solved to determine a 

perturbation to the background model by Ac. The cost function is evaluated for the 

new background model and iteration proceeds until agreement is obtained between 

the updated model and the input data. 
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2.2.2    Gelfand-Levitan Method 

The Gelfand-Levitan method is an exact method for geoacoustic inversion that is 

based on the analogous representation of the depth-dependent acoustic equation with 

the time-independent Schrödinger equation of quantum scattering theory. The time- 

independent inhomogeneous wave equation for the depth-dependent variable u(kr, z) 

can be written as, 

^ + k2-k2)u(kr,z) = 0. (2.57) 

By making a simple wavenumber translation given by fi2 = k2
0 — k2, and q(z) = 

k2 — k2(z), the equation (2.57) can be written, 

(j^ + »2-q(z)\u(^z) = 0, (2.58) 

with boundary condition u(ß, 0) = 0. This is easily seen to take the form, 

l-^ + [E-V(z))\u(E,z) = 0, (2.59) 

which is the time-independent Schrödinger equation where E = /x2 is the "energy" 

and V(z) = q(z) is the "potential". In the above and for what follows, it has been 

assumed that the density is held constant over all depths. This requirement will be 

relaxed in a later section. 

Considering the model shown in figure 2-5, and following closely the develop- 

ment by Chadan and Sabatier [12], the scattering solution to this full-line equation 

is governed by the asymptotic boundary conditions for z —> ±co: 

u±(z) 7= + RT(n)—=,    z -> Too (2.60) 
V27T v27T 

e±i\iz 
UT(Z)-T±(AX)-^=,     Z->±OO. (2.61) 

The two independent solutions u±(z) correspond to plane waves emanating from 
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Figure 2-5: 1-Dimensional inverse scattering problem model. Inverse problem is to 
determine the potential V(z) of the scattering region. 

z = =pco where RT are the reflection coefficients in the ^fz directions and T± are 

the transmission coefficients in the ±z directions. The reflection and transmission 

coefficients make up the full scattering matrix of the Schrödinger equation 

S(ß) = 
T+{ß)    R_{ß) 

R+{ß)   T.(ti) 

Assuming the end potentials asz-f ±co are both equal to zero, the full scattering 

matrix can be determined from R-(ß). 

Thus, the geoacoustic inverse problem becomes one of determining the potential 

q(z) from the reflection coefficient R-{ß) including information from both the discrete 

and continuous spectrum. Note that for kT > k^, ß becomes imaginary. The energy 

ß2 is always real and is positive for // real. The potential q(z) is in general positive. 

Chadan and Sabatier[12] continue with the solution of the one-dimensional inverse 
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scattering problem making the following assumption about the potential: 

/oo 
(1 + \z\)V(z)dz < oo. (2.62) 

-00 

A solution to the inverse problem can be found using the Fourier transform of the 

reflection coefficient, 
1      roo 

R(z) = — /     R(ß)e-lk<zdkz, (2.63) 

Where R(p) = R-{ß)- This expression is inserted into the Gelfand-Levitan type 

equation, 

K(z, y) + R(z + y) + f   R(z' + y)K(z, z')dz' = 0,    y < z (2.64) 
J — oo 

which can be solved by relatively straightforward numerical methods. It should be 

noted that Deift and Trubowitz make the same assumptions about the potential to 

solve an identical inverse problem in terms of their trace formula. Merab [50] derives 

the same equation for unequal end potentials at z = ±oo. 

The theory, as stated, is quite straightforward and requires only the plane-wave re- 

flection coefficient as input data to the inversion. However, there are several caveats 

that must be addressed before application of the Gelfand-Levitan method can be 

applied in practice. It was already mentioned that the development assumed the 

density to be constant in the problem. This assumption allows the plane-wave reflec- 

tion coefficient to be expressed solely as a function of sound speed ratios at the layer 

interfaces. However, it was shown in equation (2.16) that for the acoustic problem, 

the sound speed and density are coupled for determining the reflection coefficient. 

Merab [50] gives a derivation for the case of continuous variation of density in the 

sediment, but does not address the jump discontinuity at the water-bottom interface. 

This and other practical issues associated with solving the G-L integral equation will 

be discussed along with some numerical examples in chapter 5 of the thesis. A goal is 
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to address issues relating to the application of the method to acoustic pressure data 

measured at sea. 
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Chapter 3 

Wavenumber Estimation 

Techniques 

3.1    Introduction 

In this chapter practical aspects of extracting the discrete horizontal wavenumber 

spectrum from range-dependent acoustic data are considered. Of particular impor- 

tance are problems where the expected local eigenvalues are closely spaced in the 

wavenumber domain. In these cases, classical spectral analysis methods show the 

limit of resolution for detection of two closely spaced wavenumber values to be in- 

versely proportional to the data length. In cases where data are limited to a given 

aperture, or the environment changes rapidly, it may be impossible to resolve indi- 

vidual modes. This is demonstrated in figures 3-1-3-3 for a 50 Hz complex pressure 

signal measured on a 5 meter grid where spectra are determined for apertures of 1000 

m and 2000 m using both classical and high-resolution methods. More details about 

the field and the resulting wavenumber estimates are discussed later in this chapter. 
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tc3 (50 Hz) 

2000 m Ap. 

3500 4000 4500 5000 

Range (m) 
Figure 3-1: 50 Hz synthetic pressure field data for waveguide with unknown range- 
dependent sediment properties. 1000 m and 2000 m data segments are shown as used 
for making wavenumber estimates. 
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Spectral Estimates (tc3 50 Hz 2000 m Ap.) 
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Figure 3-2: Comparison of spectral estimates for 2000 m data aperture. Classical 
PSD result is solid, high-resolution result is dashed, and true wavenumber values are 
dotted. 
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Figure 3-3: Comparison of spectral estimates for 1000 m data aperture. Classical 
PSD result is solid, high-resolution result is dashed, and true wavenumber values are 
dotted. 
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In making spectral estimates based on classical methods, Matlab's [60] psd func- 

tion was used with a Hanning window applied to the full data aperture and the 

number of FFT points specified as 16384. The High-resolution estimates were made 

using the modified-covariance autoregressive (AR) estimator of Marple [49] with AR 

model orders of 20 and 30 for the 2000 m and 1000 m apertures, respectively. Having 

estimated the AR model coefficients, the spectra were determined on a 16384 point 

wavenumber grid. Full details of the AR estimator are discussed in Marple [49] with 

a summary provided below. Before proceeding, it should be emphasized that for this 

work the data to be extracted from the wavenumber spectral plots is the location of 

the wavenumber peaks, not the amplitudes. Recognizing that the variance in peak 

levels for AR spectral estimates can be large compared to other methods [4], observed 

discrepancies in spectral amplitudes at the resolved frequencies between the classical 

and high-resolution methods will largely be ignored. This statement in effect reduces 

the problem from that of spectral estimation to one of parameter estimation where 

the parameters being sought are horizontal wavenumbers. 

Using the above statements as a guide, wavenumber estimates can be made by 

identifying the peak locations of the spectral estimates for both the 2000 m and 1000 

m apertures shown in figures 3-2 and 3-3. The location of the true wavenumbers 

are plotted as the dotted lines in each of the figures. From the plots, it is clear 

the high-resolution method is capable of determining the four discrete wavenumber 

components for both the short and long apertures. In contrast, the classical result 

is not able to resolve the four wavenumber components for the short aperture and 

shows a bias in the peak locations for the long aperture. 

In the next section, the high-resolution method is described and characterized 

with emphasis on its ability to detect discrete wavenumbers in the presence of noise. 

The estimator will then be used to estimate the range-dependent wavenumber content 

of the data shown in figure 3-1. 
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3.2    High-resolut ion wavenumber estimation 

The problem of wavenumber estimation for point-source acoustic data is intimately 

related to the problem of frequency estimation from a finite number of noisy discrete- 

time signal measurements. For this work, spectral estimators, typically associated 

with estimating functions of frequency, are to be used as parameter estimators, where 

the parameters are horizontal wavenumbers. In this context, an estimator is desired 

for identifying and localizing peaks in the depth-dependent Green's function that cor- 

respond to the discrete horizontal wavenumbers of propagating modes using short data 

apertures. The signal model is deterministic with added noise and the requirement 

of short data apertures, suggests the use of modern spectral estimation techniques 

for extraction of the wavenumber content. In particular, a method based on au- 

toregressive spectral analysis was chosen for its high-resolution frequency estimation 

property [4] [71] [49]. This method will be investigated numerically by first applying it 

to time-series data for estimating frequency and then applying it to the wavenumber 

estimation problem of shallow-water acoustics. Where appropriate, reference will be 

made to the statistical characteristics of the results based on the data. In particular, 

the resolution of closely space frequencies or wavenumbers will be investigated and 

the variance of the estimates will be considered for signals with additive noise. The 

resolution will be looked at with regard to the theoretical resolution of AR based 

frequency estimators given by Marple [49], 

°J     Tp[SNRHn{p+\)r^ ^' 

where Sf is the frequency resolution, T is the sample interval in seconds, p is AR 

model order, and SNRiin is the signal-to-noise ratio in linear units. The variance 

of AR spectral estimators used for frequency estimation was examined by Sakai [71] 

and found to be proportional to the inverse of the product of data length and the 

square of SNR, where SNR is again given in linear units. The results of Marple and 
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Sakai show that both resolution and variance of AR frequency estimates depend on 

noise level. Although the dependence on noise level will not be explicitly studied 

with respect to the classical estimators, it should be clear that as SNR decreases, the 

advantage of using the AR estimator will decrease. In particular, as SNR decreases, 

the denominator of (3.1) decreases and the number of AR model parameters has to be 

increased to achieve the same resolution. Further, for low enough SNR, even for high 

model orders, the resolution will approach the classical limit based on data record 

length and the advantages of using an AR based estimator are lost. Therefore, SNR 

is a prime consideration when applying the AR methods to real data. 

This thesis work was partially motivated by the work of Rajan and Bhatta [65] 

where other high-resolution frequency estimators were studied. This work follows 

their format beginning with frequency estimation for a signal comprised of a single 

tone plus noise and continuing on to the acoustic problem of horizontal wavenumber 

estimation. The single-tone problem was treated by Rife and Boorstyn [69] where 

they derived the Cramer-Rao (CR) bound for the estimation of frequencies in a noisy 

signal. The CR bound is the best estimate that can be made for a given parameter 

using an unbiased estimator on the available data. The signal model for their analysis 

was of the form, 
k 

x{t) = Y,t>iei{wit+9i} + w(t), (3.2) 
i=i 

where the sum is over a finite number of frequencies, to, indexed by k, bi are the 

amplitudes, #,- are the phases, w(t) is the observation noise, and t is time. Assuming 

a constant sampling rate of Fs = 1/T Hz with the first sample taken at t0, the 

continuous signal model can be written in discrete form using the convention for 

discrete time given by 

tn = t0 + nT= (n0 + n)T. (3.3) 

61 



A single sample is then given at time tn by 

x[n] = x(tn) = Y.bie'^+W + w{tn). (3.4) 
i=l 

For their work, and the discussion that follows, the noise is independent Gaussian 

white noise with zero mean and variance a2. When estimating a parameter, the 

mean-squared error is given by, 

mse{a} = £{\a - a|}2 = var{a) + \B{a)\2, (3.5) 

where a is the true parameter value, a is the estimate, £ is the expected value 

operator, and B is the bias. The CR bound for an unbiased estimator, defined as the 

mse with B(a) = 0, gives a minimum value for the variance that can be obtained for 

parameter estimates using the given data. For a single-tone, k — 1, and known initial 

phase, 9, the CR bound is given by [69], 

2 

mseiui} > var{u} = ^^ \ ^ + Q), (3.6) 

where, b is the amplitude, n0 is the number of the first sample, N is the number of 

samples, and P and Q are defined as, 

Pjfn=m^ (,7) 
n=0 

Q = *EV=^-l)(2iV-l) (3g) 

n=0 " 

This expression was used as a measure of comparison by Rajan and Bhatta [65] for 

determining the frequency content of noisy signals using eigenanalysis-based frequency 

estimators. In the next section, a parametric model based AR spectral estimator will 

be described. Results for estimating a single frequency using the AR estimator will 
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be compared to the CR bound above with n0 = 0 and with the results of Rajan 

and Bhatta. The estimator is also applied to estimate temporal signals with two 

closely spaced frequency components and the related problem of estimating horizontal 

wavenumber content for shallow-water acoustic data. The multiple tone results are 

compared to the theoretical results of Marple and Sakai along with the numerical 

results of Rajan and Bhatta [65] where the above bound for a single tone defined by 

Rife and Boorstyn does not apply. 

3.2.1    Parametric Modeling Approach to Spectral Estimation 

Model based approaches to spectral estimation make use of a parametric representa- 

tion of the data to determine the spectrum. It is an approach based on the assumption 

that the measured data can be related to the input data through a rational transfer 

function. The data model is represented by the linear difference equation, 

q p 

Xn^Yl blWn-l - Yl akxn-k, (3.9) 
i=0 fc=l 

where {wn} is the input driving sequence with associated parameters bt, and {xn} 

is the output sequence with parameters ak along with their respective z-transforms 

given by, 
p 

A(z) = J2 amz"m, (3.10) 
m=0 

B{Z) =   J2 hrnZ-m. (3.11) 
m=0 

For the given input and output sequences, the transfer function, H(z), is simply, 

*W = |g. (3.12) 

63 



From these relationships, the power spectrum at the output of a linear filter, Px{z), 

is related to the input process, Pn(z), by 

Px(z) = H(z)H*(l/z*)Pn(z) = ||^|^lp„(z), (3.13) 

where * denotes the complex-conjugate. For a white-noise Gaussian process with 

variance a2 evaluated along the unit circle, z = exp(i2irfT) for — Fs/2 < f < Fs/2, 

Px becomes 

Pmodeiif) = PAD = °2T\B(f)/A(f)\\ (3.14) 

where A{f) = A(exp [I2TT fT}) and B{f) = 5(exp [Z2TT/T]). 

In the given context, model based spectral estimation requires three steps that 

include selection of the time-series model, estimation of the model parameters, and 

calculating the theoretical power spectral density (PSD) from the resulting model. 

The discussion above and the derivation of model based methods and other modern 

estimation techniques are reviewed by Kay and Marple [42] with practical applications 

and computer algorithms presented in Marple [49]. In any of these methods, the goal 

is increased resolution and fidelity of frequency estimates compared to the classical 

methods. The success of any given method relies on the ability to fit the assumed 

model to the data with few parameters. In this work, a model was sought that 

could determine a reliable estimate of the peak locations corresponding to the discrete 

wavenumber spectrum expected for the depth-dependent Green's function for shallow 

water. This requirement is met by a transfer function that can be represented as an 

all-pole model for the spectrum where peaks occur at the pole locations. 

3.2.2    Autoregressive Spectral Estimation 

The Autoregressive spectral estimator is defined by an all-pole model for the rational 

transfer function mentioned above. For this case, the first term on the right for the 
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linear-predictor model given by (3.9) reduces to b0 = 1 and the data model becomes, 

p 

xn = - ]T akxn„k + wn. (3.15) 
k=\ 

This model is a strictly autoregressive process of order p where the output sequence 

xn is a linear regression on itself with error terms wn. The present value of the process 

is a weighted sum of past values with a noise term. Using this model, the spectral 

representation given by (3.14) reduces to, 

VMS) = i^L. (3-16) 

This equation can be written explicitly in terms of the model parameters ak to show 

the all-pole nature of the spectral estimate, where peaks occur when the denominator 

goes to zero. 
a2T 

VAR
 " |l + EJUia*exp(-t27r/*T)r (3'1?) 

Given the above relationship, an estimate of the spectrum is obtained by determining 

the AR parameters, ak and a2. This is done formally by relating the AR parameters 

to the autocorrelation function of the data through the Yule-Walker equations [42]. 

For the signal model, xn, the autocorrelation function, Rxx(k) is, 

v 
Xn I ~ H alXn-l+k + Wn+k 

\     1=1 / 
Jixx\k) — £[xn+kxn\ ~ £ 

The correlation between the signal and noise in the second term of the last expression 

v 
- ]T a[Rxx(k-l)+£[wn+kx*n] 

i=i 
(3.18) 
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of (3.18) can be found by, 

E[wn+kx*n]   =   S 

a2h: (3.19) 
k 

0, for A; > 0 

h*0a
2,       for k = 0 

where it was assumed that H(z) is a causal and stable filter and Sm is the delta 

function, with 5m = 1 for m = 0 and 0 otherwise. Imposing the asymptotic limit 

at z —> oo on the transfer function gives, h0 = \\mz^0OH(z) = 1, and yields the 

Yule-Walker equations given by, 

ttxx\k) 
-E^atRxx(k-l), forA;>0 

-EUatRxx(-l) + a2,       tovk = 0 
(3.20) 

Given the Yule-Walker equations, the AR parameters can be determined for a 

given model order p by solving p equations from (3.20) for k > 0 and then finding a2 

for k — 0. In solving the Yule- Walker equations the model order p is a free parameter 

selected by the user. Criteria for model order selection will be discussed later. 

With the model order selected, the Yule-Walker equations can be expressed in 

matrix form as 

Äxx(0) 

•ßzx(l) 

-Rxx(-l) 

ßxx(0) 

Rxx{p-1)   Rxx(p-2) 

Ä*x(-(P-1)) 

Rxx{-{p-2)) 

ßxx(O) 

Oi -Rxx(l) 

a2 
= — 

■Rxx(2) 

Op Rxx(p)   _ 

(3.21) 

The autocorrelation matrix above, RIX is Hermitian (R^. = RM), Toeplitz (equal di- 

agonal elements), and is generally positive definite. Further, (3.21) can be augmented 
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to include the k = 0 equation and becomes, 

Rxx(0)      Äxx(-l) 

-Rix(i)     Rxx{0) 

RXX(P)  Rxx{p-i) 

Rxx(-p) 

Rxx(-(P-l)) 

Rxx{fy 

1 'a2' 

Ol 
= 

0 

ap 0 

(3.22) 

Using this form, the AR parameters and a are determined by solving (3.22) with 

p + 1 estimated autocorrelation estimates, Rxx(0), • • •, RXx(p), and using Rxx(—m) = 

Kx(m). 

An efficient method for solution of (3.22) is the Levinson-Durbin algorithm [42]. 

The algorithm is recursive and provides estimates of a number, p, AR parameter sets 

for the selected model order p and includes all the lower model order parameter sets. 

The final set at order p is the solution, with the full complement of parameter sets 

given by {an,cr2}, {a2\, a22, oVt-,""" > {°Pi, 
a

P2, • • •, aPP, &p}, where the double subscript 

denotes model order and coefficient number, respectively. With this notation, the 

algorithm is initialized by, 

an    =   -Rxx(l)/Rxx(0) 

a\    =   (l-|an|2)i?IX(0) 

and the recursion for k = 2, 3, • • • ,p is given by 

(3.23) 

O-kk     = 

O-ki     — 

CTt      = 

- [Rxx{k) + Ef^1 a^ltlRxx(k - 1)] jo\_x 

a*-i,i + akka*k-i,k-i 

(1 - \akk\2)al_x. 

(3.24) 

Writing (3.17) in terms of the autocorrelation function expressed in terms of the Yule- 

Walker equations and making use of the Levinson-Durbin algorithm to extend the 
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summation interval is the basis for high-resolution of the AR estimator, 

a2T °° 
PAR = 7—=-p ,   .0   .,-„2 = A*  £  Rxx[k] exp(-z2n fkT),       (3.25) 

where 

/ Rxx[n],     for|n|<p 
Rxx\n] = < (3.26) 

[ - ELi apkRxx[n - k], for \n\ > p. 

This compares to the correlogram method of classical spectral estimation, where the 

summation is over a finite number of autocorrelation lags estimated from the finite 

data length [49]. The effect of the finite sum of the classical estimator is a broadening 

of the main peak of the estimate, as well as the presence of sidelobes depending 

how the data is truncated at the endpoints. This combination of sidelobes and peak 

broadening for the classical estimator limit the frequency resolution for short aperture 

data. The AR spectral estimator is not limited by windowing effects on the data and 

resolution is dependent on model order selection and data aperture. 

The solution of the AR model parameters can be recast in terms of the theory of 

linear prediction. Inspection of equation (3.18) shows it to be the equation of linear 

prediction where x is to be predicted given p previous samples of the signal [42]. 

v 
x = -J2&kXn~k, (3-27) 

k=\ 

In this case, the best linear prediction for x will minimize the prediction error power, 

Qp, where 

Qp = £[\xn-xn\2). (3.28) 

It can be shown that ak = apk for k = 1, • • • ,p and QPmin = o2
p so the best linear 

predictor for x is, 
p 

x = - ^2apkxn-k. (3.29) 
k=\ 

The above states that the parameters {0^1,0^2, • • • ,o,kk}, (where, as before, the sub- 
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scripts k and p refer to the order and index) along with o\, represent the kth - order 

linear predictor and minimum prediction error power and are identical to AR pa- 

rameter estimation allowing the theory for one to apply to the other. Thus, linear 

prediction theory can be used for estimating AR parameters. This is very powerful in 

that it allows both forward and backward prediction schemes to be used in estimating 

AR parameters. Writing the pth — order forward prediction error a^n as epn given by, 

€pn     —     %n T     Zjfcrrl &pk%n—k 

—    Xn +    £fc=l(ap-l,fc + appa*p-l,p-k)xn-k     +    a,ppXn-p (3.30) 

&p—1,71       "T"       OppOp_lj7J_X, 

where 
v 

Opn — %n—p   y   / , Q-pk^n—p+ki (o.oij 

is the backward prediction error, and the term x„_p is predicted from the samples 

xn-p+i,---,xn, it can be shown that the backward prediction coefficients, bpn, are 

complex conjugates of the forward prediction coefficients, apn [49]. 

Having established the relationship between AR parameters and the forward and 

backward prediction coefficients, a method for estimation was chosen that combines 

the forward and backward linear prediction algorithms. By combining the error statis- 

tics of both the forward and backward predictors, more error points are generated 

resulting in an improved estimate of the AR parameters. The method of solution is 

that of Marple [49] and is a forward and backward least squares approach referred to 

as the modified covariance method. 

Writing the backward prediction error, bpn, of equation (3.31) as the vector, eb
p, 
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and the forward error, epn, as, e^, yields the two (TV — p) length vectors given by, 

f ef[p+l}^ 

ei = 

\    CP efP[N] 

/ 4b+l] X 

/ V eb
P[N] 

(3.32) 

/ 

where the double subscript has been replaced by a single subscript for the order and 

sample number indices are given explicitly. The combined error can be expressed as 

the length 2(N - 1) vector, ep, 

vf)    — 

' ef 

\ eb* 

\ 
J-P 

TU 

1 \ 

I V < I 
(3.33) 

Here Tp is a rectangular (N — p) x (p + 1) data matrix given by, 

T   = 

x [p+1] x[l) 

x[N - p) x[p + 1] 

^     x[N]       ■ ■ ■   x[N - p] j 

(3.34) 

and J is the (p+1) x (p+1) reflection exchange matrix given by, 

0   •••   0   1^ 

0   •••   1   0 

0   0/ 

(3.35) 
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The linear prediction coefficient vector sJh is given by, 

/     hl \ ap[\) 

ap  - 

ap[p) i 

(3.36) 

Using the above, a least squares approach is sought which minimizes the average 

of the forward and backward linear prediction squared errors over the available data, 

$ £ K'NI2 + £ |e>f 
n=p+l n=p+l 

= k% = \ [(effef
P + (eb

p)
Heb

p].   (3.37) 

This leads to a set of normal equations to be solved as given by 

R^6 Hh 

0, 
(3.38) 

with, 
/ 

H 

Rr, 
T„ T 

= Tp
HTp + JTJT;J, (3.39) 

and Op a p-element zero vector. The individual elements of Rp are given by, 

T;J T;J 

N 
rp[hJ)=   S   (x*[n-l]x[n-j]+x[n-p+l]x*[n-p + j]),    for 0 < j , k < p. 

n=p+l 

(3.40) 

Marple [49] describes an efficient algorithm for the solution of (3.38) with a couple 

of conditions. One requirement is that for Rp to be non-singular, p < 2N/3, i.e., the 

order selected can be no larger then 2/3 the data length. Another caveat is that for a 

purely harmonic signal the recursion of the Levinson-Durbin algorithm will terminate 

for any k where \akk\ = 1 since ak = 0. Thus, for signals comprised of pure or near 

sinusoids, the recursion algorithm may terminate before reaching the specified model 

order. 
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The modified-covariance AR algorithm will be implemented on a signal with 

noise for estimating discrete frequency components and compared with the high- 

resolution estimation results of Rajan and Bhatta [65] and the CR bound of Rife 

and Boorstyn [69]. It will then be used to estimate wavenumbers of the propagating 

modes for shallow water acoustic fields. 

3.3    Performance of Modified Covariance AR fre- 

quency estimator 

In order to judge the performance characteristic of the AR algorithm to estimate 

wavenumbers, several tests were performed on time series data for a signal plus noise. 

These tests were adopted from the paper of Rajan and Bhatta [65] for comparison 

with their results. The time domain signals were chosen with frequency and time- 

sampling intervals that are typical of wavenumber differences and range-sampling 

intervals for acoustic measurements made in shallow-water waveguides. The signal 

data for the numerical studies were generated using 

L 

y{n] = J2Aiexp[i2TrfinT} + w[n},    n - 0, • • • ,iV - 1, (3.41) 
i=l 

where A{ are the amplitudes, /, are the frequencies, T is the sampling interval in 

seconds, and w[n] is the added noise assumed to be zero-mean white Gaussian. For 

all studies, the amplitudes were assumed equal with a value of 1, and the sampling 

interval was 1 second. 

3.3.1    Frequency Estimation in the Presence of Noise 

The AR algorithm was used to estimate the frequency content of complex sinusoids 

with added noise. Frequency was determined by the peak location of the estimated 

signal spectrum. For the single frequency case, the sum in (3.41) reduces to a single 
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SNR (dB) MUSIC ESPRIT AR C-R 
5 -51.06 -51.78 - 58.14 -58.16 
10 -56.56 -58.10 -63.66 -63.16 
20 -66.52 -68.50 -73.94 -73.16 
30 -76.38 -78.54 -82.82 -83.16 
40 -86.20 -88.56 -90.86 -93.16 

Table 3.1: SNR (dB) vs 101og10(mse) for estimation of frequency = 2.3/27T Hz. 

term and the spectrum will contain a single peak. Estimates were made for increasing 

noise levels as indicated by the signal to noise ratio (SNR). SNR for this study is 

defined as 10logi0(a*/al), where a2
s and o\ are the mean-square signal power and 

noise power, respectively. Estimates were made for a fixed data length of 40 samples 

(N = 40), and 100 realizations of the additive noise were generated to determine 

performance statistics. AR model order was determined by trial and error at each 

SNR as the maximum order that gave only a single peak for all realizations of the 

signal. For SNR < 30 dB a model order of 13 was used which is approximately equal 

to N/3. The mean squared error of (3.5) was used as a basis for performance and 

compared to the CR bound given by (3.6). Results are given in dB calculated as 

lOlogio(mse). The ideal result for an unbiased estimator is one that achieves the CR 

bound. In addition to the CR bound, the AR results are compared with the estimates 

of the MUSIC (Multiple Signal Classification Method) and ESPRIT (Estimation of 

Signal Parameters via Rotational Invariance Techniques) determined by Rajan [65], 

where his results have been converted to match the scale defined for this study. 

Frequency estimates were made for individual frequencies /i = 2.5/2-ir Hz and 

f2 = 2.3/27T Hz for SNR values from 5 to 40 dB. The mse results for estimating f2 

are shown in table 3.1. Bias was calculated for each of the two frequencies at the 

different SNR and are shown in table 3.2. From the results given in tables 1 and 2 

the AR estimator shows the following behavior. 

1.) The mean-squared error is better for the AR estimator then either MUSIC or 
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SNR (dB) freq = 2.5/ vr Hz freq = 2.3 / n Hz 

5 -2.56xl0"4 

10 7.88xl0~5 

20 -7.38xl0~5 -1.02.T10"
5 

30 -4.06xl0"6 

40 -2.39xl0~5 -3.47x10-5 

Table 3.2: SNR (dB) vs bias of estimates for frequencies fx = 2.5/27T Hz and /3 = 
2.3/27T Hz. 

ESPRIT and approaches the CR bound at all SNR levels. 

2.) The bias error is of the same order or better then MUSIC and ESPRIT at all 

SNR levels. 

Although these results are compared with the CR bound, the estimation results 

at each different SNR had a small bias which violates the criterion of an unbiased 

estimator.   Given a limited number of realizations, this discrepancy can cause the 

estimator to perform better than the bound as the results in table 3.1 suggest at 

low SNR. Nevertheless, the comparision is still of use for evaluating results from 

different estimators. Further, the bias for SNR i 10 dB was sufficiently small that mse 

effectively gives a measure of the variance of the estimates. The variance of 5.3xl0-9 

i 

at 30 dB SNR also compares favorably to the estimate 2.5xl0~~8 as determined by 

Sakai's [71] result which is proportional to SNR^/N. Finally, it should be noted, 

in order to measure the small variances in the estimated frequencies at high SNR, a 

large number of terms was used in the summation interval of (3.25) to give sufficient 

discritization in the frequency domain. For SNR of 30 dB, 218 points were used in 

the summation. 

3.3.2    Frequency Resolution 

The next study uses the AR estimator to identify two closely spaced frequencies 

in the presence of added noise.   This is representative of the case of closely spaced 
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SNR (dB) ESPRIT AR 

20 -53.74 -61.16 
30 -63.66 -70.28 
40 -73.74 -77.70 
50 -83.72 -79.48 

Table 3.3: SNR (dB) vs 101og10(mse) for estimation of f0 using ESPRIT and AR. 
fo = 0.4 Hz, Of = 0.011 Hz. 

wavenumbers for a shallow water waveguide. The signal model of (3.41) was used 

with two frequencies of various separation frequencies, 5f, that ranged from 0.009 Hz 

to 0.027 Hz. Using equation (3.1), at 20 dB SNR, a minimum model order of 13 would 

be required to resolve 5f = 0.009 Hz. The frequencies used to generate the complex 

signal were /i = f0 = 0.4Hz and f2 = f0- 8f Hz. Each signal was comprised of 40 

samples and 100 realizations were made of the noise at each SNR. Model order was 

again selected by trial and error to yield two spectral peaks for all signal realizations 

with a fixed order of 13 for SNR under 40 dB. Table 3.3 gives the mse estimates 

vs SNR for estimation of /„ = 0.4 Hz and a frequency separation of 0.011 Hz. In 

these cases where both estimators were able to resolve the two frequencies, the results 

indicate that the AR estimator performs better than ESPRIT at all SNR for resolving 

closely spaced frequencies. Similar results were observed for the other estimates of 

closely spaced frequencies. 

* 

3.3.3    Size of Data Vector and Model Order Selection 

In the previous studies, AR model order was selected by trial and error based on 

the number of known sinusoids in the signal. However, the resolution and variance 

of the estimator were shown by Marple [49] and Sakai [71] to be a function of total 

data length, model order, and SNR. Further, although the all pole model of the AR 

estimator suggest that model order be selected equal to the number of sinusoids in 

the signal, the presence of noise requires a higher model order to best fit the model to 
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Samples ESPRIT 
% correct 

AR 
% correct 

40 20 34 
60 21 55 
80 88 81 
100 99 98 

Table 3.4: Probability of success for estimation of f = 0.4 Hz with SNR = 10 dB, 
model order p = 20, and increasing data length. Percent correct for estimating (fl ± 
0.001) Hz. 

the data. As noise increases, the number of model parameters required to best fit the 

data also increases. In this section, the effect of data length is examined as it effects 

resolution in resolving signals comprised of closely spaced sinusoids. An additional 

study is then run to examine the effect of model order selection on resolution and 

variance and the presence of spurious peaks in the spectral estimates. 

The first of these tests was conducted to identify two frequencies, /i = 0.4 Hz and 

/2 = 0.39 Hz, with SNR = 10 dB for various data lengths. Data length was increased 

from 40 points to 100 points, and the probability of success in identifying fx ± 0.001 

Hz was determined for 100 realizations of the noisy signal. For SNR = 10 dB and 

N = 40, a model order of 20 was necessary to theoretically resolve the two freqencies. 

This was used for all data lengths in the study. The results are shown in table 3.4 and 

compare reasonably well with the ESPRIT results of Rajan and Bhatta [65]. Overall, 

the AR estimator performs better then MUSIC and ESPRIT for short data lengths 

of 40 and 60, and on par with them for longer data lengths. 

A similar study was conducted to examine the effect of model order selection on 

frequency estimates. The signal was comprised of 40 samples with two sinusiods at 

fi = OAHz and f2 = 0.3bHz with an SNR of 20 dB. Of particular interest is the effect 

of resolution on model order, and also the presence of spurious peaks in the spectrum 

for high model orders. The effect of model order selection on the spectral estimates is 

clearly shown in figures 3-4 and 3-5. In each of the figures, the left column shows the 
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Figure 3-4: Spectral estimates for 100 realizations of signal with 2 sinusoids in noise. 
SNR = 20 dB, fi = OAHz, f2 = 0.35Hz. AR model order is indicated at top of each 
plot. 

results of each spectrum for the 100 signal realizations plotted on top on one another. 

The right column shows the spectra for all realizations lined up next to one another 

with any peaks greater than 60 dB down indicated in white. This display gives an 

indication of both peak width and location. It also illustrates the stability of the peak 

locations for the two excited frequencies for all realizations. This type of behavior 

is typical of wavenumber estimates for range-independent shallow water waveguides 

and is used to identify the prominant propagating modes using the sliding window 

transform method. From the plots, it is clear that as model order increases, the 

peak widths decrease. However, as model order increases past N/3, spurious peaks 

can be introduced into the spectra. The presence of extra peaks causes ambiguity 

in the selection of the peaks which represent the true signal. Model order selection 

for AR spectral estimates with no a priori knowledge must strike a balance between 

resolution and the introduction of spurious peaks. 

Marple [49] reviews several methods and criteria put forth for determining model 

order selection, including the final predicion error (FPE) [1] and Akaike information 
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Figure 3-5: Spectral estimates for 100 realizations of signal with 2 sinusoids in noise. 
SNR = 20 dB, fi = OAHz, f2 = 0.35Hz. AR model order is indicated at top of each 
plot. 

criterion (AIC) of Akaike [2], where Gaussian noise statistics are assumed. Each of 

these criteria seek a minimum value in the prediction error variance with a penalty 

applied for increased model order p after the minimum is reached. Marple also de- 

scribes the minimum description length (MDL) and criterion autoregressive transfer 

(CAT) function. After examining all these criteria, Marple states that the results 

of applying each to real data are inconsistent. Various empirical studies are then 

presented which suggests that for noisy data a model order of N/3 to N/2 yield good 

results on short data segments. This hypothesis is tested using the AR estimator used 

for this work. For this study 40 data points were used with an SNR of 20 dB for the 

same frequencies used in the previous case, fi = 0.4 Hz and /2 = 0.39 Hz. Success 

rates were calculated for 100 realizations of the noise for model order of between 2 

and 25, with model order p = 13 approximately N/3. The results shown in table 3.5 

confirm the empirical results cited by Marple as well as those shown in figures 3-4 and 

3-5. Success rates are maximized for a model order p = 13. Results marked by an 

X, indicate that no peaks were observed in that bin for any realizations. It was ob- 
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Samples mse(fl) % (fl ± 0.001) mse(f2) % (f2 ± 0.001 
2 X X 0 1 
5 X X 0 0 

10 -57.92 65 -58.98 71 
13 -62.64 78 -64.14 88 
15 -62.48 83 -63.42 83 

20* -22/-64 79 -26/-66 89 
25 -18 59 -28 79 

Table 3.5: Probability of success for estimation of f = 0.4 Hz with SNR = 10 dB and 
increasing model order. 

served that as model order was increased beyond iV/3, spurious peaks contaminated 

the spectra. However, for the case of p = 20, where two values are listed, a small 

number of outliers were removed using a priori information and success rates were 

improved. However, outlier removal requires information that may not be available 

so is not generally a viable approach to improving on estimates. 

A final comment about model order selection is in regard to the true nature of 

the process being modelled by the AR parameters. For a true AR model, there exists 

a given model order p for which the prediction error variance estimate is minimized. 

For model orders greater then p, the prediction error variance is flat and and gives 

a method for selecting the exact order of the AR process. However, for a non-AR 

process, prediction error variance is a monontonically decreasing function of p and no 

minimum will be reached. This contributes to the problem of selecting a model order 

a priori for a non-AR process. 

3.3.4    Application of AR estimator to acoustic data 

It is now of interest to use the AR spectral estimator to determine the horizontal 

wavenumbers for the normal modes propagating in a shallow-water waveguide. Cor- 

recting for geometric spreading and adding a noise term, the signal to be analyzed 
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Depth (m) Cs (m/s) P (g /cm3) a (nepers/m) 

0-40 1515.0 1.0 0.0 
40+ 1800.0 1.56 0.001 

Table 3.6: Pekeris ocean model.  Frequency = 100 Hz, source depth = 20.5 m and 
receiver depth = 15.5 m. 

Mode No. kn (1/m) *s *r 

1 0.409260 0.179 0.204 
2 0.392023 0.181 0.074 

3 0.361364 -0.003 -0.178 

Table 3.7: Modal eigenvalues and corresponding amplitudes at source and receiver 
for Pekeris ocean model. 

can be represented in terms of the acoustic pressure, P(nAr), by [65] 

y[n] = VnArP[nAr] + w[nAr] = ^ At^i + w[nAr], (3.42) 

where the range interval is sampled by Ar, and #, = e
ik,nAr, is the mode function with 

horizontal wavenumber kt and amplitude At. The objective is to estimate the kt from 

the data measured along r. To generate data, KRAKEN [59], a normal-mode acoustic 

propagation code, was used. The output of KRAKEN gives complex pressure fields 

as a function of range as well as eigenvalue information for the input environment 

and source frequency. The environment model used was a Pekeris ocean model with 

parameters listed in table 3.6. The source frequency was 100 Hz, with source and 

receiver at depths of 20.5 m and 15.5 m, respectively. The field was sampled on a 1 m 

range grid. Mode numbers and modal amplitudes at the source and the receiver are 

listed in table 3.7. The KRAKEN results show that mode 3 is only weakly excited 

at the source depth and will be difficult to estimate. For the given field, wavenumber 

estimates are made and mse calculated for various aperture lengths and SNR levels. 
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SNR (dB) Aperture (m) Mode No. ESPRIT AR 
40 240 1 

2 
3 

-81.32 
-69.74 
-19.38 

-83.00 
-72.46 
-39.68 

40 360 1 
2 
3 

-88.61 
-77.58 
-53.84 

-83.00 
-78.70 
-61.62 

20 360 1 
2 

-69.40 
-61.76 

-73.98 
-66.82 

20 480 1 
2 

-81.14 
-71.62 

-79.50 
-71.48 

Table 3.8: SNR (dB) vs 101ogi0(rase) of eigenvalues for different data aperture 
lengths. 

AR model order was selected as N/3 as determined by total aperture length. Table 

3.8 shows the results of these calculations. The results, as indicated by small rase, 

show that the strong modes are detected for all aperture lengths and SNR levels. The 

weak third mode is identified with confidence only for high SNR and long aperture. 

Consistent with the previous study of time series data, the AR estimator performs as 

well as or slightly better than the other high-resolution methods. 

3.4    Wavenumber Estimates for Range-Dependent 

Synthetic Acoustic Data 

Rajan and Bhatta [65] also studied wavenumber estimation using high-resolution esti- 

mators for range-dependent acoustic environments. Their method examined wavenum- 

ber estimates resulting from short aperture transforms using data from a model that 

included bathymetry with a constant slope in range. The bathymetric slope was 1.67 

m/km , which equates to an angle of 0.955°. In general, their wavenumber estima- 

tors yielded wavenumber values that were between those expected for the deepest 
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and shallowest portion of the aperture. They concluded that errors associated with 

wavenumber estimates under the assumption of locally range-independent segments 

are small. Further, given the previous studies, the errors associated with this slight 

range dependence would be indistinguishable in the presence of noise. The behavior 

described by Rajan and Bhatta was observed for wavenumber estimates made on 

an independent data set provided as part of a recent inversion techniques workshop 

(ITW) [40]. 

3.4.1    Inversion Techniques Workshop 

The ITW was conducted in order to evaluate the current state of the art in geoacous- 

tic inversion algorithms for application in range-dependent shallow-water waveguides. 

Synthetic acoustic pressure field data were generated for several test case environ- 

ments and given to participants for analysis. The data were provided at a number of 

discrete frequencies on both horizontal and vertical arrays. Properties of the water 

column were given, as were source and receiver depths. Bathymetry was assumed 

known to within a meter. No information was given regarding the sediment proper- 

ties, and participants were asked to invert for compressional wave speed, attenuation, 

and density in the bottom. A total of four different synthetic tests cases (TC0-TC3) 

were given for analysis. TCO was a calibration case, shown in figure 3-6, and was 

characterized by a constant bathymetric slope where the stratigraphy in the bottom 

followed the bathymetry. The input model for TCO was given so that participants 

could calibrate their forward propagation models to the given synthetic data. TCO 

was used in this work to examine the characteristic of the AR wavenumber estimator 

for a range-dependent problem. Because the model was given, KRAKEN could be 

used to calculate the range-dependence of the eigenvalues. Sliding window AR esti- 

mates could be made and wavenumber estimates compared to the expected values at 

a given range step. The sliding window estimator results are plotted in figure 3-7 for 

a 1000 m aperture with a step length of 50 m. The data was provided on a 5 meter 
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Figure 3-6: Environment model for Inversion Workshop TC0. 

range grid resulting in an N/3 model order selection of 66 for a 1000 m aperture. The 

estimates for the 50 Hz data and the true values are shown in figure 3-8. The true 

values are bounded by the values determined for the endpoints of the 1000 m aperture 

and represent the minimum and maximum values within the aperture. Similar to the 

Rajan study, the AR estimated wavenumbers fall between the minimum and maxi- 

mum values for most range intervals. And, although the resulting wavenumber values 

did not depart very much from expected values, the inconsistent prediction behavior, 

shown as oscillations about the true values, is undesirable. One can conclude from this 

study that the locally range-independent assumption cannot be applied for constant 

slopes in bathymetry of even 1 degree, and that bathymetry must be accounted for 

in the wavenumber estimates. Harrison and Siderius [37] suggest a method for using 

range-independent models to calculate range-dependent effects through the use of an 

effective geometry. In their work, an environment similar to TC0 is considered and 

some of their ideas may be applicable to determining wavenumbers for the continu- 

ously varying waveguide. Their ideas are similar in nature to those of Fernandez [24], 

where horizontal wavenumber analysis is investigated for range-dependent environ- 
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Figure 3-7: Sliding Window spectral estimates for 50 Hz TCO. Triangles are the 
range-dependent horizontal wavenumbers determined using KRAKEN plotted over 
the wavenumber estimates. 
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Figure 3-8: Wavenumber estimates for TCO (dots) plotted with values for the starting 
range, center range, and end range of the transform aperture. 
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TC2 - Shelfbreak 
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Figure 3-9: Shelfbreak environmental model for Inversion Workshop TC2. 

ments by migrating the measured field to an effective range grid to approximate a 

range-independent environment. Another area of investigation for wavenumber anal- 

ysis in range-dependent environments would be the application of time-varying au- 

toregressive estimators (TVAR) [43] [82]. The TVAR model allows for time-variation 

in the AR model coefficients for non-stationary time series data that can include both 

trends and discrete changes in the signal. However, as the AR estimator discussed 

here does not perform well for the continuously varying environment, TCO and TCI 

(both constant slope) were not analyzed for the workshop. Instead, emphasis was 

placed on examining wavenumber estimates for range-dependent cases where bathy- 

metric effects are minimized, this includes regions of slightly undulating bathymetry, 

and regions of constant local bathymetry. An example of the later is TC2, shown in 

figure 3-9, where a flat bottom occurs after a shelf-break. The wavenumber estimates 

at 50 Hz for TC2 are shown in figure 3-10 and appear to be range-independent for 

ranges after the break. Workshop organizers confirmed this to be true. In this case, 

the data again was sampled on a 5 meter grid, and a 1000 m sliding window estimator 

was used with a step size of 50 m and a model order of 20.   The low model order 
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was used because the data is noise free and approximates a sum of pure sinusoids 

after the shelf break causing the Levinson-Durbin algorithm to terminate at a low 

model order. The effect of the low model order in the range-dependent region is low 

resolution as shown in the figure. However, if model order is selected high enough 

in the range-dependent region, results similar to those of TCO could be expected. 

By using an algorithm with an adaptive model order selector as the window stepped 

through range, better resolution of the modes in the range-dependent region could be 

obtained as shown in figure 3-11. For this result, model order was linearly decreased 

from p = 66 to p = 20 as the window began to overlap the range-independent region. 

This result highlights the effect of model order selection on the AR estimates as dis- 

cussed previously. Additionally, sliding window wavenumber estimates were applied 

to the TC2 data with 40 dB additive white noise added. In this case, model order 

was fixed at 66 and a 1000 m sliding window aperture used. The results are similar 

to the results for the adaptive estimator with no noise. The effect of the noise on the 

estimates were minimal, but allowed the recursion in the AR algorithm to finish at 

all ranges eliminating the requirement for adaptive model order selection. 
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Figure 3-10: Wavenumber estimates showing range-independent region after the shelf- 
break for Inversion Workshop TC2. 
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Figure 3-11: Wavenumber estimates using adaptive AR model order selector showing 
wavenumber evolution for Inversion Workshop TC2. 
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Figure 3-12: Wavenumber estimates for order 66 AR estimator showing wavenumber 
evolution Inversion Workshop TC2 data with 60 dB noise added. 
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Figure 3-13: Environment model for Inversion Workshop TC3. 

3.4.2    Range-Dependent Sediment - TC3 

A particularly interesting data set for analysis was TC3 where the bathymetry was 

flat and range-dependence occurred solely in the sediment. The geometry and other 

known parameters are shown in figure 3-13, along with 50 Hz data on a 5 meter 

range grid for the upper receiver in figure 3-1. No noise was added to the data. The 

only a priori information given about the bottom is that "there is an intrusion in 

the sediment" [40]. No other information about the intrusion is given. This point 

is important because depending on the inversion algorithm used, assumptions may 

have to be made about the nature of the intrusion. Features such as location and 

shape may have to be assumed [13] that have an impact on the inversion results. 

Techniques based on wavenumber estimates need no such assumption and are only 

limited by their ability to resolve features using short data apertures. 

Using the sliding window AR estimator on the 50 Hz data with a model order 

of 30 yields the wavenumber-range plot shown in figure 3-14. From the figure two 

range-independent regions can be identified directly by the constant wavenumber 

values.   The other regions of low resolution are a result of the fixed model order 
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Figure 3-14: Wavenumber estimates.for range-dependent sediment of Inversion Work- 
shop TC3. 

used with the sliding window estimator. In those regions, the window is overlapping 

two range-independent regions with with wavenumber values very closely spaced. 

Examining the range-independent regions of the figure, and recalling that the range 

axis represents ranges at the center of the aperture, it is possible to determine the 

range of data included in each aperture. Thus, the result at range = 1100 m includes 

data that spans the range interval 600 m < R < 1600 m, and results at range = 2100 

m includes data that spans 1600 m < R < 2600 m. By including all the data spanned 

by the aperture as the window slides, the range-independent regions identified from 

figure 3-14 can be extended by 500 meters at each end to clearly demarcate the 

range-independent regions for TC3 as shown in figure 3-15. Using this method, it 

was determined that the sediment of TC3 was composed of a background region 

with an intrusion consisting of a rectangular block located in range between 1100 

m < R < 2900 m. This result was confirmed by the workshop organizers when the 

input models were revealed for each of the test cases. Having identified the different 

regions, wavenumber estimates were made using the entire aperture of data within the 
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Figure 3-15: Wavenumber estimates for range-dependent sediment of Inversion Work- 
shop TC3 with range-independent segments identified. 

3 range-independent segments as shown in figure 3-16. The individual wavenumbers 

estimated for the intrusion are all less than the corresponding values estimated for the 

background sediment of regions 1 and 3. This indicates that the intrusion consists 

of a harder material relative to its surroundings and has a correspondingly higher 

sound speed. Using the perturbative inverse method previously described, this result 

was confirmed. Figure 3-17 shows the inverted sound speed profile (dashed) along 

with the starting background profile (circles) and true answer (solid) for each of the 

regions. 

The inversion was only performed at a single frequency, and does not capture the 

detailed nature of the true profile, but matches well in an average sense. Resolution 

kernels [65] for each inversion confirm this and are shown in figure 3-18 for several 

depths indicated by z0. In general, they indicate resolution is better at the shallower 

depths as indicated by the sharper peaks. Higher resolution could be obtained by 

performing wavenumber estimates and inversions at higher frequencies.   This was 
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Figure 3-16: Spectral estimates for full apertures of range-independent regions iden- 
tified for Inversion Workshop TC3. 
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Figure 3-17: Compressional wave speed in the sediments for Inversion Workshop 
TC3. Open circles are background profile used for perturbative inversion, solid line 
is ground truth, and dashed line is inferred profile. 
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Figure 3-18: Resolution Kernels for inversion results of Inversion Workshop TC3. 
Background represents regions 1 and 3 and Intrusion represents region 2. 

not done due to time constraints, and because the data were not provided on a dense 

enough range grid to estimate wavenumbers without aliasing. Comparison of complex 

pressure calculated for the inverted profile matched well the experimental data at 50 

Hz and 100 Hz and shown in figures 3-19 and 3-20. A conclusion from this test case 

is that high-resolution estimators are necessary in order to resolve discrete events 

that occur in the sediment and impact on the complex pressure field. It is clear from 

the analysis in figures 3-1—3-3 that the intrusion in TC3 could not be resolved using 

classical techniques. 
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Figure 3-19:  Complex pressure field modeled using inferred sediment sound speed 
profile compared to inversion workshop TC3 data at 50 Hz. 

94 



m 
T3 

-20 

-40 

-60 

CC  -80 

-100 

Test Case 3 (100 Hz) 
I              1              1               I 1               1               1 i I 

^— Model 
- - Experiment 

jf^vwvvvv 
I                          I vT1 

AJW 

t               t               1 

I                                        1  I 
I                                         l 

i                    i                    i 

i 

500   1000   1500   2000   2500   3000   3500   4000   4500   5000 

500   1000   1500   2000   2500   3000   3500   4000   4500   5000 

Range (m) 

Figure 3-20:  Complex pressure field modeled using inferred sediment sound speed 
profile compared to inversion workshop TC3 data at 100 Hz. 
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3.5    Wavenumber estimation in random media - In- 

ternal Waves 

In addition to making wavenumber estimates for waveguides with range varying 

bathymetry and sediments, measurements in realistic ocean environments include 

the effects of sound speed variability in the watercolumn due to temperature fluc- 

tuations. Although, small sound speed perturbations may be indistinguishable from 

other causes of observation noise in the data - such as small ranging errors or range- 

dependence in the sediments or bathymetry due to sand ripples - where estimator 

characteristics have already been described, larger variations must be considered. 

This is particularly true in the case of internal waves (IW), where it is well known 

that energy transfer can occur amongst the propagating modes [61]. The temporal 

measure of sound speed variability passing due to internal waves is on the order of 

several minutes compared to a few seconds for a propagating acoustic field to pass 

through a given point [14]. By propagating over several kilometers through multiple 

internal wave events, the received field takes on features of a random process. In a 

recent paper, Siderius et. al. [74] look at the effect of sound speed fluctuations on 

geoacoustic inversion results for broadband acoustic data measured on vertical line 

arrays. In the wavenumber analysis discussed for this thesis and the experimental 

work, the effects of internal waves are assumed to be minimized due to the averaging 

effect that occurs when transforming the data over a long aperture in range [14]. 

Further, in the previous discussion, modal evolution was discussed in the context of 

adiabatic mode theory where no energy is transferred between modes and the number 

of propagating modes remains constant. However, in the presence of internal waves 

the adiabatic mode assumption is violated and the effects on local wavenumber es- 

timates should be understood. In particular it is of interest to determine if internal 

wave fields cause a shift in the estimated wavenumbers, if they cause certain modes 

not to be resolved, or if additional modes are excited and can be detected. 

96 



To understand the effects of internal waves on the forward propagation problem, 

a recent session at a meeting of the Acoustical Society of America (ASA) [81] focused 

on benchmarking acoustic propagation models for range-dependent media including 

internal waves. Although focused on the forward problem, these studies provided 

valuable data for beginning to understand the wavenumber estimation problem. 

In this section, synthetic data from the benchmark session is used for estimating 

wavenumber content for an environment both with and without internal waves. A 

description of this model and other range-dependent cases can be found at [75]. The 

waveguide environment was a Pekeris model with a flat bottom at 200 m depth. 

Density in the watercolumn was 1 g/cm3 with no attenuation. The bottom was 

modeled as a fluid with sound speed of 1700 m/s, density 1.5 g/cm3, and attenuation 

0.1 dB/A. The background sound speed profile was generally downward refracting 

with a slight duct occurring above 26 m depth and was given by [76] 

c(z)   = 1515 +0.016z,    z<26m 

c(z)   =   c0[l + a(e~b + b - 1)],    z >= 26 m, 
(3.43) 

where c0 = 1490 m/s, a = 0.25, and b = (z - 200)/500 [76]. 

To the background sound speed was added a perturbation as a function of depth 

and range to represent the internal wave field. The sound speed perturbation, dc, 

was given by, 
5 

dc(z, r) = 4(z/B)e-z/B ]T cos(Kir), (3.44) 
t=i 

where Kt = 2TT[2000 - 300(z - l)]"1 m"1 and B = 25 m. Using this model, the 

maximum sound speed perturbation is about 7.5 m/s. The range dependent sound 

speed profile is shown in figure 3-21. Using the above models, PECan [11], was used 

to generate the acoustic field for both the background and perturbed sound speed 

environments from 0-20 km. The data are shown in figure 3-22 for the full aperture 

and for 5 km sub-apertures.   The difference in structure of the modal interference 
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Figure 3-21: Range-dependent sound velocity field for IW wavenumber estimates [76]. 
Background profile is on left. 

patterns observed in the transmission loss plots is most evident at long ranges. These 

data were generated by Gordon Ebbesen [21] at DREA Canada on a 5 meter range 

grid. 3000 m sliding window AR wavenumber estimates were made for both cases 

with a step of 500 m and a model oder of 200. Additionally, the exact mode values for 

the unperturbed model environment were determined using KRAKEN. The resulting 

wavenumber results with the KRAKEN results overlayed are shown in figures 3-23 

and 3-24. 

The number of modes determined by KRAKEN is greater then the number esti- 

mated using the sliding window method indicating that not all the modes are excited. 

Wavenumber estimates that agree with the KRAKEN results are shown by a dashed 

line. The plots show that for the unperturbed case, 6 modes are estimated that can 

be correlated with the KRAKEN result. For the IW case, 8 modes are identified 

that correlate with the KRAKEN results. The plots show the wavenumbers to be 

very stable with range, indicating range-independent boundary conditions. This is 

particularly evident for the the higher order modes. There is evidence of some in- 

stability of the estimates for the IW case seen as undulations about the predicted 
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Figure 3-22: 100 Hz TL plots for internal wave study. 5 km sub-plots show departure 
of internal wave measurements from unperturbed case. 
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Figure 3-23: Sliding window wavenumber estimates with KRAKEN results (dashed) 
plotted for unperturbed case. 
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Figure 3-24: Sliding window wavenumber estimates with KRAKEN results (dashed) 
plotted for IW case. 
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value. However, this result might be expected as energy is being exchanged between 

the modes with range and appears as a scintillation in the wavenumber estimates 

with range. However, there is no apparent shift observed for the modes observed in 

the unperturbed case and the IW case. There are, however, additional modes that 

are energized due to the mode coupling which are consistent with those predicted by 

KRAKEN. A conclusion from this study is that for the environment provided, the 

internal waves couple energy into modes that might not otherwise be excited for a 

given source/receiver geometry and give additional information that could be used as 

input data for inversion. This is a good result for the relatively weak internal wave 

field provided. However, future studies could include an examination of the types of 

limits on IW perturbations that cause these observations to break down. A second 

caveat to these observations relies on the ability of an estimator to resolve individual 

modes. The exact nature of the coupling and the wavelength of the internal wave 

structure will impact the ability to resolve modes. In this particular case, it is clear 

that the first two modes predicted by KRAKEN were not present in the data. How- 

ever, the first two modes were very close together in wavenumber space and would 

require a long aperture to resolve them. These issues are less troublesome at lower 

frequencies and shallower depths where the wavenumbers are less densely spaced. In 

these cases, shorter apertures could be used to observe the same effect as the 3 km 

apertures used in this study. 
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Chapter 4 

Modal Mapping Experiment 

(MOMAX) 

4.1    Introduction 

The Modal Mapping Experiments were designed as an efficient means for measuring 

the full spatial variability of a point source acoustic field in a complex shallow water 

environment [30]. Previous experimental efforts have, in general, employed synthetic 

aperture horizontal arrays generated along radials to measure pressure as a function 

of range at a constant bearing. Typically, this was achieved by towing a hydrophone, 

suspended at a fixed depth, away from a moored source, or alternatively, towing a 

source away from a fixed receiver. For ranges greater than a few wavelengths, the hor- 

izontal wavenumber spectrum of the field could then be extracted by employing the 

asymptotic form of the Hankel transform. These efforts were effective in demonstrat- 

ing the range-dependent nature of the spectrum due to range dependent waveguide 

properties. However, it is desirable to examine the effect of waveguide properties on 

the spectrum along radials at all angles around the source as given from a complete 

spatial measure of the propagating field. The MOMAX experiments were designed to 

make measurements of the propagating acoustic field for a point source on a spatial 
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Figure 4-1: Sketch representation of MOMAX experimental layout 

grid given in absolute geospatial coordinates of latitude and longitude. By design, 

these measurements are related to the horizontal wavenumber spectrum of the field 

by application of the appropriate two-dimensional transform relation as discussed in 

chapter 2. An overview of the experimental configuration is given in the next section 

followed by descriptions of specific experiments. 

4.2    Experiment Overview 

In the MOMAX experiments, data are acquired on an array formed by individual 

hydrophones suspended from several freely drifting buoys equipped with precision 

GPS navigation. Figure 4-1 illustrates the operational scenario and assets. As many 

as four buoys might be drifting at a given time and synthetic apertures can be formed 

103 



using data acquired on a single buoy or several buoys. 

For the usual experimental run, the acoustic field was generated by a single pro- 

jector operating in a cw mode comprised of several discrete tones between 20 and 475 

Hz. At any given time, no more then four frequencies were transmitted by a projec- 

tor. During one experiment, two projectors were used simultaneously transmitting 

four frequencies each. Several different acoustic projectors were used in the MOMAX 

experiments, including an NRL J-15-3 source (50-475 Hz), a Webb Research organ 

pipe type source (200,300 Hz), and an IHI source (20-125 Hz). Each source was set to 

operate at a nominal level of 173 dB re 1/iPa at the set frequencies. Experiments were 

run with the source(s) either moored on the seafloor, or suspended from the ship at 

fixed depth - nominally 30 meters. With the source suspended from the ship, several 

different operational configurations were used including mooring the ship to achieve 

a stationary source position, allowing the ship to drift freely, or towing the source 

with the ship. These configurations play an important role in the interpretation of 

the data as will be shown in the next chapter. 

The measurement buoys used in MOMAX, schematically depicted in Figure 4-2, 

were developed at WHOI specifically for these experiments. Each buoy contained 

a calibrated hydrophone suspended at a nominal depth of 30 meters by a system 

designed to isolate the effects of wave motion on the vertical motion of the phone. 

Measurements of hydrophone depth using pressure sensors showed actual hydrophone 

depths to be greater than 30 meters, but generally stable, keeping depth to within a 

meter. A typical depth record for a single experiment is plotted in figure 4-3. The 

data record includes data taken starting before deployment and continuing through 

recovery of the buoys. A depth reading of zero is indicated when the buoy is on 

deck. Throughout the course of the experiment, it was observed that during periods 

of adverse weather at the surface, hydrophone depth variation increased as the limits 

of the damping system were exceeded. It should be noted that between the second 

MOMAX experiment and the SWAT experiment, the hydrophone suspension and 
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Figure 4-2: MOMAX drifter buoy components. 
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SWAT EXP 5 - Hydrophone Depth (Larry) 

Time (hrs) 

Figure 4-3: Hydrophone depth record for typical MOMAX experimental run. 

damping system was modified. Comparing depth records from both experiments, the 

system used on the original buoys was superior to that of the SWAT experiment. 

This observation is important because depth data was not available for the MOMAX 

97 experiment that used the original hydrophone suspension system. 

Acoustic data measured at the phones were broadcast back to the ship in real- 

time over a VHF radio link. The analog signals were sampled at 3255.2083333 Hz 

and stored to computer hard disk. The buoys were also equipped with GPS receivers 

and 900 MHz modems for transmitting geographic coordinates back to the ship in 

real-time. Using a mapping program developed as part of this work, a real-time 

display of all buoy and ship positions was used to monitor buoy locations. Additional 

GPS receivers were used to measure the position of the suspended acoustic sources. 

GPS data were recorded and subsequently processed to achieve absolute positioning 

accuracy to within 1 meter. Further, by establishing a local differential GPS system 

between the source ship and each buoy, relative positions between the source and 

each receiver were measured to sub-meter accuracy [19] [20]. 

Application of Hankel transform based methods to the measured data requires 
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accurate measurements of the acoustic phase; consequently a precise time base was 

required for both the source and receiver data. The source signal was generated by a 

function generator with an external clock controlled by a TRAK GPS clock accurate 

to within 200 nanoseconds of true GPS time. The same clock was used to drive the 

data acquisition system. Synchronization of the time base for the source and receiver 

systems allowed very precise phase measurements to be made of the acoustic signal. 

4.2.1    Data Reduction 

The acoustic signal was generated and transmitted as a sum of sinusoids for the 

frequencies of interest. However, the Hankel transform method described is for a 

single frequency. To look at a single frequency, the data received on the hydrophone 

were quadrature demodulated at each of the transmitted frequencies [5] by taking 

the FFT of approximately 1.25 seconds of data with time determined by the center 

of the FFT window. Complex pressure data at each frequency were taken as the 

real and imaginary parts of the resulting transform at the appropriate frequency 

bins. Care was taken to ensure that the resulting spatial sampling was on the order 

of a point every meter. The total signal is treated by sliding a window of a given 

number of points and performing the FFT at each step. A half-window overlap was 

used for this procedure. Phase accumulation was accounted for by keeping track 

of time accumulated before application of the transform at each step and- wrapping 

accordingly. 

Positioning data were recorded independently on a separate system. The acoustic 

and navigation data were merged by finding the union of times where both acoustic 

and position data were recorded. Positioning data were acquired every second, a 

slightly faster rate then the demodulated acoustic data. Consequently, the acoustic 

data was interpolated onto a time grid common to the GPS data. Linear interpolation 

was used by considering the real and imaginary parts of the complex signal separately. 

The result of this step was to provide data on an xy-grid relative to the source 
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positioned at the origin. Similarly, the data could be interpolated onto an absolute 

position grid by using the GPS data given in coordinates of latitude and longitude. 

4.3    MOMAX 97 and SWAT 01 

Since 1997, three different MOMAX type experiments have been performed. Two 

of the experiments took place off the coast of New Jersey and will be discussed in 

this thesis. The third experiment took place in the Gulf of Mexico, about 145 nm 

west/northwest of Key West, Florida. 

4.3.1    Environment 

The first modal mapping experiment took place in about 70 meters of water off the 

NJ coast in March 1997. In October 2001, another experiment was conducted in the 

same area under the Shallow Water Acoustic Technology (SWAT) Memorandum of 

Understanding (MOU) between the US and Japan. The overall SWAT experiment 

was a joint effort between institutions from both the US and Japan. In addition to 

the MOMAX group from WHOI, other US participants were the Naval Research Lab- 

oratory (NRL), and the University of Miami (UM). The Japanese participants were 

under the direction of the Technical Research and Development Institute (TRDI). 

The general operational area for both experiments was within the STRATAFORM 

swath mapping survey area shown in figure 4-4. STRATAFORM is a program of 

the Office of Naval Research (ONR) to collect high-resolution geophysical data in 

shallow-water regions for determining continental shelf morphology and sediment 

properties [53]. Presently there is a concerted ONR effort [56] by both geologists 

and underwater acousticians to characterize this region in terms of both its geologic 

and acoustic properties. The MOMAX effort is concentrated on examining the re- 

lationship between local sub-bottom sediment properties and low-frequency acoustic 

propagation. 
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MOMAX Site Overview 
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72.4.0. 

Figure 4-4: MOMAX Experiment Site 
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Specifically, MOMAX 97 was concentrated in two regions within the STRATAFORM 

area centered at 73.17°W Longitude, 39.06°iV Latitude and 72M°W Longitude, 

39.24°N Latitude corresponding to the HUNTEC site and SWARM site, respectively. 

The HUNTEC site was where an extensive high-resolution 3-D seismic survey was 

conducted with the discovery of a complex internal sediment structure underlying a 

more benign seafloor surface [16]. SWARM refers to the " Shallow Water Acoustic in 

Random Medium" experiment that took place in 1995 [3]. The SWAT experiment re- 

visited the HUNTEC and SWARM sites with focal points near 73.15°W, 39.00°N and 

72.85°^, 39.30°N, respectively. Each of these locations is within a region referred to 

as the "outer shelf sediment wedge" [16]. This region extends along the edge of the 

New Jersey shelf for 150 km southwest of Hudson Canyon. The entire region can be 

characterized by a layer of soft sediments of varying degrees of thickness and strat- 

ification overlying a prominent sub-surface seismic reflector, designated "R". In the 

region of the MOMAX experiments the sediment layer is thin and is thought to be a 

homogeneous mixture of silty and sandy clay [16]. Additionally, 3-D seismic reflection 

surveys have identified regions within the wedge where the sediment layer is patchy. 

In some regions, the reflector R breaks the surface and sub-R sediments are exposed. 

In these regions a complex system of sub-marine channels has been identified that are 

believed to have been caused by an erosional episode which occurred during the last 

(Wisconsinan) period of low sea level. Bathymetry for the area is relatively benign 

with depth gradually increasing along lines perpendicular to the shelf break. 

4.4    Summary of Measurements 

4.4.1    MOMAX 97 

During the course of MOMAX 97, a total of 8 separate experiments were conducted. 

Experiments 1-7 were done in the vicinity of HUNTEC, and experiment 8 was con- 

ducted at the SWARM site. Table 4.1 provides a summary of the different experiments 
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Exp. No. Site Source Moe Curley Shemp 
1 HUNTEC J-15 no no YES 
2 HUNTEC J-15 no no YES 
3 HUNTEC J-15 YES YES no 
4 HUNTEC J-15 YES YES YES 
5 HUNTEC WEBB YES YES YES 
6 HUNTEC J-15 YES YES YES 

7(a & b) HUNTEC WEBB YES YES YES 
8 SWARM J-15 YES YES YES 

Table 4.1: Overview of source and buoy deployments for MOMAX 97. 

including site location along with the type of source and the buoys deployed. Source 

frequencies for the J-15 were set at 50, 75, 125, and 175 Hz for all experiments, and 

the Webb source operated at 200 and 300 Hz. 

Throughout the experiment, environmental data were collected in the form of CTD 

data for determining the sound velocity in the water column, as well as current data. 

Each buoy and the source were also equipped with temperature sensors that recorded 

temperature continuously throughout the experiments. As shown in Figure 4-5, sound 

velocity in the water column was generally isovelocity to a depth of between 30-35 

meters, upward refracting between 35-60 meters, and isovelocity for depths greater 

then about 60 meters. In addition to the water column measurements, chirp sonar 

data were collected along the drift tracks of the individual buoys and the source for 

many of the experiments. The chirp was operated for a frequency range of 3-6 kHz 

and was to provide detailed bathymetry data over the course of each experiment. 

Additionally, the chirp data could be used to indicate qualitatively the stratigraphy 

in the region of the individual experiments. Unfortunately, for this experiment, data 

recorded on DAT tapes for archiving were not usable for further analysis so no quan- 

titative analysis of the CHIRP data was possible. However, as part of the SWAT 

experiment, a separate CHIRP survey was conducted in the STRATAFORM area in 

the vicinity of HUNTEC and SWARM. As this data becomes available, regions of 
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Figure 4-5: (a) SSP for all experiments (b) Mean and +/- 1 std 
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Exp. No. Site Source Source Freqs. Moe Larry Shemp 
1 SWARM IHI 

J-15 
20,50,75,125, 

175,225,425,475 
YES no YES 

2 SWARM J-15 50, 125, 475 no no YES 
3 HUNTEC J-15 50, 75, 125, 175 YES YES YES 
4 HUNTEC J-15 50, 75, 125 YES YES YES 
5 HUNTEC J-15 50, 75, 125 YES YES YES 

Table 4.2: Overview of source and buoy deployments for SWAT. 

overlap with the MOMAX 97 experimental data will be sought out to supplement 

the environmental characterization. 

Low-frequency acoustic data was taken at 20, 50, 75, and 125 Hz with a source level 

of 174 dB re 1 // Pa using the J-15 source suspended from the ship. It was intended 

that the ship be moored or at anchor to provide for stationary source measurements. 

However, due to weather conditions the ship could not be anchored and the exper- 

iments were conducted with the ship either drifting freely or towing the source at 

a constant speed. During experiments 5 and 7 the Webb source was moored and 

suspended about 1 meter off the seafloor and operated at 200 and 300 Hz. Unfortu- 

nately, the internal clock on the Web source became unstable during the experiments 

and the data were unusable. 

4.4.2    SWAT 

The SWAT experiment was comprised of 5 different experiment runs, two near the 

SWARM site and 3 near HUNTEC. The source and buoy deployment overview is 

given in table 4.2. Frequencies are listed separately as the number and value of trans- 

mitting frequencies changed for each run. As originally planned, each of the SWAT 

experiments was to use two sources transmitted 4 frequencies simultaneously. Of 

particular interest, was the 20 Hz signal provided by the IHI source. Unfortunately, 

due to technical problems, the IHI source was only operable during the first run. As 
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Figure 4-6: Sound speed variability during SWAT experiment 1 determined from 
temperature variability recorded on NRL T-string. 

in MOMAX 97, the acoustic experiments were supported by a variety of environmen- 

tal measurements including CTDs, XCTDs, and XBTs, along with temperature and 

depth sensors on both sources and receivers. Additional assets included stationary 

temperature string (T-string) moorings, deployed by NRL, that spanned the water 

column to provide a continuous record of the temperature variability during the ex- 

periment. Converting the temperature variations recorded on the T-string to sound 

speed using Wilson's equation [83], assuming a constant salinity value, an example of 

the sound speed variability measured during SWAT experiment 1 is shown in figure 

4-6. Throughout the course of the experiment, the temperature profile showed the 

water column to be warm near the surface and cooler near the bottom indicating a 

downward refracting sound speed profile. As shown in the picture, the location of the 

boundary between the warm and cool mixed layers was time dependent with a vari- 
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ation of 10 to 15 meters in depth over the course of the experiment. This variability 

would be of concern if performing wavenumber transforms over the entire data set. 

However, it will be shown for the data sets considered that the sound speed variability 

can be considered locally stationary. 

High-resolution chirp sonar data and sediment cores were also performed in the 

area. These data are being analyzed separately and results are anticipated for future 

comparison with inversion results obtained as part of this thesis work. In the following 

chapter, data from the MOMAX 97 and SWAT experiments will be discussed and 

analyzed. 
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Chapter 5 

Data Analysis 

5.1 Introduction 

In this chapter some of the analysis techniques discussed in the previous chapters are 

applied to the MOMAX experimental data. 

5.2 Spatial measurements of complex-pressure fields 

The MOMAX experiments were novel in that they combined measurements of acous- 

tic field data with navigation data provided by GPS. Previous synthetic aperture ex- 

periments typically used either acoustic or radar ranging systems to measure source/receiver 

separation distances [48]. The nominal accuracy provided by these systems was about 

one meter, where radar ranging was typically better at longer separation distances 

and acoustic methods used for near ranges. Using GPS, sub-meter positioning accu- 

racy could be obtained for source/receiver separation distances [19] [20] [31] with no 

restriction on the ranges. Further, absolute positioning on a geospatial grid could be 

determined to within 1 m. 

In order to transform the complex pressure data into its wavenumber represen- 

tation, it is necessary to accurately measure the phase of the signal.   Because the 
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MOMAX I EXP2 SPATIAL PRESSURE FIELD SHEMP 50 HZ 

-1500 

-500 -2500 Meters North Meters East 

Figure 5-1: 50 Hz spatial pressure field measured with source located at the origin 
of the coordinate system. Top plot is pressure magnitude, center plot is phase, and 
bottom plot is drifter track geometry. 

MOMAX approach is new, it is worthwhile to examine the phase of the acoustic 

signal in order to both comment on its quality and also possibly gain insight into 

the shallow water propagation problem. Figure 5-1 shows 50 Hz complex pressure 

measured on a two-dimensional grid relative to the source position. The effects of 

the source/receiver motion are clear in both the magnitude and phase plots as the 

receiver moves out in range from the source and then turns and moves broadside 

to the source. Referring back to the modal expressions for the pressure field given 

by equation (2.36) in chapter 2, the phase of the complex pressure field measured 

in space is proportional to range. Using the radiation condition and the paraxial 

approximation for horizontal wavenumbers, given by 

kn = ky/1 - en « k{l - en/2)    for en < 1, (5.1) 
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an approximate expression can be derived relating the time rate of change of the 

phase to the separation range rate between source and receiver [33], 

%a\% (5-2) at      k at 

where A; is a typical wavenumber. The resulting expression can be integrated in time 

to yield a relation between the phase and the source-receiver range, 

r = r0 + ^, (5.3) 

where r0 is the range from source to receiver at initial time t0. From these relationships 

it is clear that as source/receiver separation distances increase, phase wraps with a 

positive slope, and wraps with a negative slope when distances are decreasing. These 

effects are evident in figure 5-2 where complex pressure is plotted as a function of 

time. The top two plots are complex pressure magnitude and phase, and the bottom 

plots are separation distance between source and receiver measured using GPS and 

calculated using equation (5.3) with initial range, r0, assumed known as determined 

by a point GPS measurement at t0. Of particular interest for this data set is how 

well the phase tracks the relative source/receiver positions through the turning point 

where the phase reverses itself when going from opening in range to closing in range. 

Figure 5-3 is a plot of range rates determined from both GPS measurements and 

phase measurements at 50 Hz using equation (5.2). From the figures, it is clear that 

there is good agreement between the measurements for source/receiver positioning 

using both GPS and acoustic phase. Using this type of analysis on data acquired 

using GPS navigated buoys thus shows great promise for doing source localization 

and tracking using measured phase data [58]. 
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(a)     EXP2 SHEMP IP(t)l (50 Hz) 
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(c)    EXP2 Range vs. Time from GPS 

(d)   EXP2 k"1 x Unwrapped Phase (50Hz) 

21.5 22 
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23.5 

Figure 5-2: 50 Hz data plotted as a function of time with corresponding separation 
distance between source and receiver. Initial range for bottom plot determined from 
a single GPS measurement. 

5.3    Wavenumber analysis of MO MAX data 

5.3.1    Geometrical interpretation 

Given the previous discussion of the complex pressure field measurements from the 

MOMAX experiments, it is of interest to look at results in the wavenumber domain. 

As discussed in chapter 2, Hankel transform based methods are to be used for examin- 

ing horizontal wavenumber content of the propagating fields. Because these methods 

are based on a radial geometry, the measured two-dimensional spatial pressure data 

must be mapped to a radial grid. Of course, this is not ideal; it would be preferable 

to use the full two-dimensional inverse transform relationship given by (2.8), but the 

sparse nature of the measurements precludes its use. A further requirement of the 

Hankel transform based methods is that data analysis is limited to data where the 

source and receiver are either monotonically opening or closing in range. Given this 
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EXP2 Shemp Speed vs Time (60 second average 50 Hz) 

21.5 22 
GMT Hours 

Figure 5-3: Source/receiver separation speeds determined from GPS and phase mea- 
surements of 50 Hz complex-pressure field. 

requirement, spatial data must first be mapped as a function of range indicating the 

separation distance between source and receiver. From this mapping, data can be 

selected with sufficient range apertures for resolving individual modes. Referring to 

figure 5-2, data measured for GMT times between 20 and 22.6 hours is monotoni- 

cally increasing with range and suitable for Hankel transform based processing. The 

method for mapping to a simple range grid from an arbitrary drift path is illustrated 

conceptually in figure 5-4. Having mapped the synthetic aperture data to a function 

of range relative to the source, other considerations must be given to interpretation 

of results given the full two-dimensional geometry of the source/receiver paths. Much 

like in the synthetic aperture experiments for linear arrays, assumptions are made as 

to the local nature of the measurements. Wavenumber content extracted for a given 

range interval is attributed to local waveguide properties for that range interval. Sim- 

ilarly, in this work, local waveguide properties are attributed to measurements made 

over the local 2-D spatial grid. Thus, local inversion results for a given sub-aperture 
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Buoy, 

Drift Path 

Source 

Figure 5-4: Schematic representing mapping of spatial pressure data to a range grid. 

of data, must be given in terms of both range and bearing relative to the source. Al- 

though not much more will be said regarding this issue for the results that follow, it 

becomes an issue when synthesizing results from multiple experiments in a particular 

region. Additionally, when mapping the data to the range grid, consideration must 

be given to the projection angle of the data onto the local radial. Depending on the 

nature of the spatial variability of the waveguide, data which crosses many lines of 

azimuth, while having a monotonic range separation, may have to be interpreted dif- 

ferently then data which is taken along a constant bearing. An example would be the 

case where the bathymetry approximates a wedge. In this case the interpretation of 

wavenumber evolution depends on the orientation of the receiver track to the source. 

For a track where the receiver travels perpendicular to lines of constant bathymetry, 

wavenumber evolution can be attributed solely to range-dependence of the environ- 

ment. If the receiver track slowly spirals around the source, wavenumber evolution 

would be due to both azimuthal- and range-dependent changes in the environment. 

For this thesis work, data are considered for cases where the source/receiver geometry 

is dominated by their separation in range with limited changes in relative bearing. 
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As such, when mapping the data to a range-grid, azimuthal symmetry is assumed 

over the apertures considered. In future work, as more of the data are analyzed, in- 

cluding more complicated drift paths, more sophisticated techniques may have to be 

employed to exploit the full spatial measure of the complex pressure field. One area 

to explore would be the projection theorems commonly used in image processing. As 

discussed by Lewitt [46], these theorems relate a one-dimensional transform along a 

path to the full two-dimensional transform of a region that contains the path. In- 

cluded among the transform theorems is the projection-slice theorem [46] that relates 

a one-dimensional Fourier transform along a path to the full two-dimensional Fourier 

transform. This may be a way to exploit the sparse nature of the MOMAX 2-D 

pressure field measurements to extract the full spatial evolution of the wavenumber 

spectra. 

5.3.2    Modal Mapping - Single Mode 

During SWAT 01 measurements were made using a 20 Hz source, corresponding to 

a wavelength of about 75 m. For the experimental water depths of approximately 70 

m, and a sandy bottom with sound speed 1600 m/s, theory predicts that only a single 

mode would be excited for a Pekeris waveguide [28]. Figure 5-5 shows the source and 

receiver tracks for the 20 Hz experiment, where the source location is indicated by 

the location of the R/V Endeavor. 
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SWAT/MOMAX III Experiment 1 
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Figure 5-5: Source/Receiver geometry for SWAT 20 Hz experiment. 

Data are considered near the end of the experiment run when the source is approxi- 

mately stationary and the buoys are between 7 and 9 km from the source and drifting 

in a southerly direction. 

The single mode case is of interest because the modal representation of the pres- 

sure field is given by a single term. Using the adiabatic approximation for a range- 

dependent waveguide, modal evolution with range can be determined without trans- 

forming to the wavenumber domain. The adiabatic mode expression for the pressure 

field given a single mode is written, 

P = Ae 
» -_A _exp (i/o*i (r')dr') 

y/loki(r')dr' 
(5.4) 

where, 

A = 
Ai ==,    $= f Ur')dr'. 

Arl.r' JO 
(5.5) 

\l & h{r')dr' 

Examining the phase term, $, modal evolution of the single mode, &i(r), can be 

123 



determined directly by, 

*i(r) = f. (5.6) 

This method was applied to the 20 Hz data measured on the buoys Moe and Larry 

for SWAT experiment 1 as described. Pressure magnitude and phase measured on 

Larry are shown in figure 5-6. The top magnitude plot does not contain the deep nulls 

typical of modal interference suggesting the interaction of several modes. Although 

the magnitude plot appears somewhat noisy, the bottom plot shows the phase to 

be very well behaved. Unwrapping the phase data and applying a 50 point moving 

average filter, ki(r) was determined using equation (5.6) as shown in figure 5-7. Also 

shown are the results for a 500 m aperture sliding window AR transform. Model 

order selection for this and other analysis on real data was based on N/3 where N is 

the number of data samples. The number of points for discretization in wavenumber 

space was 8192, which gives a bin size of 7.6699e-04 m_1, which is greater than the 

variance of the estimator determined by the method of Sakai which for a data aperture 

of 500 m and an assumed SNR of 10 dB, is approximately 1.25e-4 m~\. However, 

even given the low resolution in wavenumber space for the AR estimator, along with 

low resolution in range due to the finite step side of the estimator, good agreement is 

shown between the two methods. The analysis was repeated for the data measured 

on Moe with similar results as shown in figures 5-8 and 5-9. The sliding window 

transform results for MOE are not as good at the middle ranges because there was a 

dropout in the data around 7900 meters that affects the AR wavenumber estimates 

as the transform window overlaps the region of missing data. 
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Figure 5-6: 20 Hz Complex pressure measured on Larry. 
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Figure 5-7: Modal evolution for single mode at 20 Hz on Larry. 
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Figure 5-8: 20 Hz Complex pressure measured on Moe. 
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Figure 5-9: Modal evolution for single mode at 20 Hz on Moe. 
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MOMAX I EXP4 SHEMP TRACK 
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Figure 5-10: MOMAX I experiment 4 geometry and bathymetry. Depth is indicated 
by the colorbar on the right in meters. For this experiment, the buoy moved very 
little as indicated by the track at the upper left, and the source was moving slowly 
along a constant bearing. 

5.4    Modal Mapping - Perturbative Inversion Re- 

sults 

In this section results are presented where the input data were eigenvalues determined 

from the MOMAX measured pressure fields. Range independent results are presented 

for two different experiments with different source/receiver geometries. For each case, 

eigenvalues are determined and used as input data to a perturbative inverse algorithm 

to determine an effective sound speed profile for the sediment. Magnitude plots of 

the measured data are compared with model runs using the profile resulting from the 

inversion. The experiments considered are from the MOMAX 97 data set measured 

in the STRATAFORM region near New Jersey. 

Figure 5-10 shows the source/receiver configuration for MOMAX 97 experiment 
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Figure 5-11: 75 Hz pressure field magnitude for MOMAX 97 experiment 4 plotted 
over the drift track. Drift track is plotted relative to source position. 

4. The bathymetry for the area indicated an average depth of about 77 meters. For 

this experiment, the receiver is considered stationary and the source is closing in 

range roughly along a radial. For this geometry it is straightforward to apply the 

Hankel transform based methods to extract wavenumber content. The magnitude of 

the pressure field at 75 Hz for this experiment is shown in figure 5-11 in 3-D coor- 

dinates. The complex pressure as a function of range is shown in figure 5-12 where 

phase is shown to wrap with range. The aperture for this experiment was only about 

1300 m so a single transform was taken to determine horizontal wavenumber con- 

tent. The spectrum resulting from a classical spectral estimator using Matlab's psd 

function [60] indicated 5 dominant propagating modes. The resulting spectrum is 

shown in 5-13 where the result was interpolated onto a finer wavenumber spacing 

grid for determining the exact peak locations. Using the eigenvalues determined from 

the peak locations of the spectrum, a background model was determined for initial- 

izing a perturbative inverse algorithm to determine compressional wave speed in the 
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Figure 5-12: 75 Hz complex pressure plotted as a function of range for MOMAX 97 
experiment 4. 
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Figure 5-13: Horizontal Wavenumber Spectrum for full aperture 75 Hz data. 
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Figure 5-14: Starting profile and inferred profile for MOMAX 97 experiment 4. Den- 
sity was 1.8 g/cm3 and no attenuation was used. 

sediment. The model was determined using layers with sound speeds corresponding 

to the phase speed of each propagating mode. Given a number of layers and sound 

speeds, The basement depth and corresponding sound speed, are adjusted by trial 

and error until the number of eigenvalues for the model matches the number mea- 

sured in the data. As the basement depth is increased or decreased, each layer is 

stretched or compressed accordingly. KRAKEN was used to determine the model 

eigenvalues for the background model. Using the perturbation algorithm described 

in chapter 2, the background model was updated iteratively until convergence was 

achieved between the eigenvalues of the updated model and the measured values. 

The background starting model is plotted along with the inferred sound speed profile 

after 30 iterations in figure 5-14. The density in the sediment was was 1.8 g/cm3 

with no attenuation in the model. The inferred sound speed values between 1500 

and 1800 m/s for the upper 50 meters of sediment are consistent with sound speeds 

for sand and silty-sand [36] as expected for the STRATAFORM region.  Using the 
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Figure 5-15: Comparison of 75 Hz measured and synthetic pressure magnitude data 
for inversion of MOMAX 97 experiment 4 . 

inferred sound speed model for the sediment, along with measured sound speed values 

for the water column, range-independent synthetic pressure data were generated and 

compared to the measured data as shown in figure 5-15. The inferred model predicts 

the observed modal interference pattern well with the exception of the region around 

1500 meters. This suggests that a range dependent inversion might be more suitable 

for this region. 
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Figure 5-16: MOMAX 97 experiment 2 geometry and bathymetry. Buoy track is 
shown in upper left and source track in bottom right. Water depth is indicated by 
the colorbar on the right in meters. 

The source/receiver geometry and bathymetry for a second experiment from MO- 

MAX 97 is shown in figure 5-16. For this experiment both the source and receiver 

were drifting independently along different paths. This geometry is a representation 

of that described by Schmidt and Kuperman [73] where the source and receiver are 

allowed to move at different angles relative to one another in the same horizontal 

plane. For the case where the angles between the velocity vectors of the source and 

receiver remain constant, the radial vector between the source and receiver can be 

considered constant and the data mapped to a radial grid for application of Hankel 

transform based methods. The data represented on a grid with its origin located at 

the source is shown in figure 5-17. These data are easily mapped to a range grid and 

the full aperture spectrum estimate is shown in figure 5-18. 

The spectrum determined using the AR spectral estimator showed contributions 

from 6 dominant modes whose eigenvalues where used as input data to determine a 
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Figure 5-17: 75 Hz pressure field magnitude for MOMAX 97 experiment 2 plotted 
over the drift track. Drift track is plotted relative to source position. 
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Figure 5-18: Horizontal wavenumber spectrum estimate for MOMAX 97 experiment 
2 data at 75 Hz. AR estimate is solid line, PSD estimate is dashed. 
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background starting profile for perturbative inversion. An estimate of the spectrum 

for a the classical estimator with a Hanning window applied to the data is shown for 

comparison. Of particular significance is the lack of any peak in the classical estimate 

at a wavenumber around 0.295 m_1. Initial inversion work using wavenumber values 

from the dominant peaks in the classical spectrum gave non-physical results. It also 

serves to illustrate the subjective nature of picking which peaks are significant in 

the spectral plots for determination of wavenumbers for construction of background 

model. Using the AR results, the background sound speed profile and the resulting 

inferred profile are shown in figure 5-19. The inferred profile shows more resolution 

because the layers in the starting profile were split in half and the smoothness con- 

straint applied to the least squares problem of the perturbation algorithm. This step 

represents some fine tuning to the general inverse algorithm and was performed with 

guidance from Dr. Subramaniam Rajan [68]. Using the inferred sound speed profile, 

synthetic data were generated using KRAKEN and compared to the measured data 

as shown in figure 5-20. 

The model/data comparison is in general very good with the modal interference 

pattern matching very well. However, in order to match the model to the data, the 

ranges for the data had to be shifted by 370 meters. It is unclear if this shift was 

necessary to accommodate the geometry of the source/receiver motion or if there 

were errors made in the measurements. One difficulty of the moving source and 

receiver problem is in locating the result of the inversion geographically. For the 

moving source/receiver problem it is not possible to identify a specific region of the 

waveguide from which the local wavenumber measurement results. This would be 

particularly difficult in an environment that has properties that vary in both range 

and azimuth. From the analysis of Hawker [38] and Schmidt and Kuperman [73], 

it is also clear that the source/receiver motion will impart a shift in the horizontal 

wavenumbers of the the spectrum relative to that of a stationary experiment. The 

shifted wavenumbers are what is measured and the inversion is based on using the 
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shifted eigenvalues. For the low velocities associated with the drifting source and 

receiver in this experiment the expected wavenumber shift should be negligible. This 

is confirmed by the good agreement between the measured and modeled pressure field 

magnitude shown in figure 5-20 that indicates a good match between the eigenvalues of 

the inferred geoacoustic model and the measured eigenvalues. However, these results 

also suggest that it is only necessary to match the eigenvalues of the propagating 

modes, and not necessarily the propagation environment, to generate a field that 

matches the measured data. Thus, when determining the geoacoustic model for a 

given environment, it may be necessary to shift the measured modal eigenvalues to 

account for source/receiver geometry and motion in order to infer the true geoacoustic 

properties of the seabed. 
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Figure 5-21: Source receiver geometry for SWAT experiment 2 with region of source 
track doubling back on itself. Segment 2 indicates time when source is moving away 
from buoy and segment 3 indicated time when source is closing on buoy. 

5.5    Modal Mapping - Moving Source Analysis 

In the preceding section, a discussion was given for the moving source/receiver prob- 

lem when the source and receiver move along different tracks but very slowly. In this 

section, the problem is discussed for a moving source that traverses the same space in 

the waveguide twice. In chapter 2, the results of Hawker [38] and also Schmidt and 

Kuperman [73] showed that a shift in the phase of the complex pressure field could be 

expressed as a shift in the horizontal wavenumbers for a source moving at a constant 

velocity where the shift is proportional to modal group velocity. This phenomenon 

was observed during the SWAT experiment when wavenumber estimates made for a 

source moving out and back over the same waveguide track were found to be shifted 

relative to one another. The experimental geometry for this experiment is shown in 

figure 5-21 where the source goes out along a radial in range and then comes back 

137 



SWAT EXP2 (50 Hz) 

4000      2000      0 

Meters East 

Figure 5-22: 50 Hz pressure field for SWAT experiment 2. Source is moving at a 
constant speed of 2 m/s. 

again along roughly the same track. The 50 Hz field measured for this run is shown 

in figure 5-22. The pressure field magnitude for a 4 km aperture near the turnaround 

point is isolated and shown in figure 5-24. Segment 2 refers to the data taken along 

the NW leg where the source/receiver are opening in range, and segment 3 refers to 

the return leg where source/receiver are closing in range. Sound speed variability 

measured using the NRL T-string data for the two segments are shown in figure 5-23. 

For both segments, the location of the mixed layer in depth and the temporal variabil- 

ity was similar as determined by examining the mean and standard deviations of the 

temperature profiles. The modal interference pattern for the two tracks are very sim- 

ilar with most observable differences due to noise. Using a measure of the pressure on 

the hydrophone for a period of time when the 50 Hz source was turned off, SNR was 

determined to be about 20 dB. Sliding window AR transforms with 1000 m apertures 

were applied to each of these data segments for estimating horizontal wavenumber 

content. For the estimated SNR and data aperture length, the theoretical variance of 

the estimates is very small at 6.28e-7 mr2 giving an error in the estimate of approxi- 
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Figure 5-23: Sound speed variability measured on NRL T-strings during acoustic 
measurements along segments 2 and 3. Colorbars indicate sound velocity in m/s. 

mately 0.0003 m-1. The use of the theoretical variance is justified by the observation 

that the AR estimator performed as well or better then predicted on the time-series 

data in chapter 3. Figures 5-25-5-28 show the wavenumber evolution for the two 

different segments using two different representations. 

Picking off the peak locations for the different mode numbers with range from 

the waterfall plots, modal evolution with range are shown in figure 5-29. Difference 

between maximum and minimum wavenumber estimates determined with range are 

an order of magnitude greater than the estimated measurement error. Thus, even 

given the presence of noise in the measured signals, the wavenumber estimates are 

shifted versions of one another for the overlapping source tracks. This is consistent 

with the wavenumber shift for a moving source given by Hawker [38] and also ob- 

served by Rajan et. al. [67]. From this observation, a method for correcting for the 

wavenumber shift is suggested along with a direct measure of modal group velocity 

from the data. In this analysis, the broadband effect of the moving source is removed 

by analyzing the data at a fixed frequency. The resulting wavenumber shift observed 
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Figure 5-25: Modal evolution for 50 Hz data of segment 2. 
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Figure 5-27: Modal evolution for 50 Hz data of segment 3. 
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Figure 5-28: Waterfall plot of spectrum amplitudes with range for 50 Hz data of 
segment 3. 

in the data due to source motion, as predicted by both Hawker [38] and Schmidt 

and Kuperman [73] through the phase of the pressure field, must be accounted for in 

doing geoacoustic inversion. 

As in the work by Rajan et. al. [67], the starting point for the analysis is equation 

(2.40) written as 

kn — '»«(li       )i (5.7) 
Jng 

where v is the source speed, positive when moving toward the receiver, and the source 

track is assumed to be along a line that goes through the receiver location. Estimates 

of group velocity were made from the differences obtained from the observed shift in 

wavenumbers determined from the data. For the individual wavenumbers determined 

along each track, the difference in wavenumbers can be expressed by, 

Ak: = k:^-k^ = kn 
,v+      v. 

V9n 
q 

Vn 
), (5.8) 

where v± are the relative velocities for the different tracks, and kn is the eigenvalue 
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Figure 5-29: Evolution of modes 1 and 2 with range showing bias due to source motion 
over segments 2 and 3. 

for a stationary source. For a source moving with a constant velocity back and forth 

along the same track, i.e. v+ = —V-, the above expression can be simplified to give 

an expression for the group velocity ,v%, as, 

2knv 
(5.9) 

In the above, it remains to estimate kn from the shifted wavenumber. For a source 

moving out and back along the same path at a constant speed, 

*n = (tfB+) + fc;(B-))/2, (5.10) 

Combining (5.8) and (5.10), the group velocity can be written in terms of sums and 

differences of the shifted wavenumber. 

9       k*iv+)     *■*("-> ' 
(5.11) 

Using the above expression, the modal group velocity can be calculated from the 
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shifted wavenumber observations. The wavenumber estimates corrected using range- 

averaged group velocities for the apparent Doppler shift are shown in figure 5-30. 

The expected agreement between the two measurements is improved and an average 

value at a given range is suggested for use in inversion schemes. The calculated modal 

group velocities of 784.4 m/s and 668.9 m/s for the first two modes are about half 

the expected values when compared with the water sound speed. However, the source 

speed of 2 m/s was very slow leading to small observed differences in the wavenumber 

estimates and a corresponding lack of resolution. Because the error estimate of the 

expected measure was small compared to the changes in individual wavenumbers with 

range, some range-dependence in the medium can be inferred. Thus, in estimating 

the error in the measurement of the modal group velocity, the error in the sum and 

difference measurements is used, where the expected wavenumber shift with range is 

assumed to be constant. The error in the sum of the wavenumbers with range is given 

by e+ and taken to be the standard deviation of the measured sum as a function of 

range divided by two. The error in the difference is given by e_ and taken to be the 

standard deviation of the measured wavenumber differences as a function of range. 

Using the above definition, the error in the group velocity measurement, c„s, can be 

expressed using standard techniques as a percentage of the expected value by [79] 

V°n V(^+) +V->)/2 +  (kn{V+) - kn^)' (5'12) 

Using measured values in the above expressions, errors in the group velocity measure- 

ment due to wavenumber estimation errors were greater than 40 %. This can account 

for much of the error in the observed group velocity estimates. Other sources of error 

need to be investigated, including the effects due to displacement of the out and back 

tracks for this data. 

Nevertheless, motivated by these experimental results, a numerical experiment 

was conducted using modal functions and eigenvalues determined using KRAKEN 
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Figure 5-30: Doppier corrected wavenumber estimates for modes 1 and 2 over data 
segments 2 and 3. 

Depth (m) Cp (m/s) P (g/cm3) 
0-75 1510.0 1.0 
75+ 1600.0 1.6 

Table 5.1: Pekeris waveguide model parameters for moving source experiment. 

for a Pekeris waveguide with properties given in table 5.1, using a source frequency 

of 50 Hz. For the given input environment and source frequency, KRAKEN also 

outputs modal group velocities, which are given along with the mode numbers and 

phase velocities, for the Pekeris waveguide in table 5.2. Using the mode functions 

output from KRAKEN, complex pressure fields were generated as a function of range 

for a stationary source, and for sources moving with velocities of ± 10 m/s. The 

fields were generated for a 5 km aperture as a sum over the modes and corresponding 
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Mode No. kr (1/m) vp (m/s) vg (m/s) 

1 0.2055064180 1528.71 1499.07 
2 0.1974793421 1590.85 1476.45 

Table 5.2: Modal eigenvalues and amplitudes for 50 Hz Pekeris. 

Mode No. klrue (1/m) kfst (1/m) % diff. „.true „.est 
Q 

% diff 

1 0.2055064180 0.2055054887 4.5e-04 1499.07 1498.95 0.008 
2 0.1974793421 0.1974895105 5.1e-03 1476.44 1471.13 0.365 

Table 5.3: Wavenumber and group velocities estimated from moving source spectra. 

wavenumbers using the simple expression, 

n=i       Jk*r 
(5.13) 

where $ns and $„r are the mode amplitudes at the source and receiver, k*n = kn(l + 

—) with vng the modal group velocity, v is the source speed, and w[r] is Gaussian 

white noise. The complex fields with SNR of 40 dB generated for the different source 

motions are shown in figure 5-31. 

Using the synthetic data, estimates were made of the wavenumber content for the 

different source velocities. Figure 5-32 shows the spectral estimates for the 10 m/s 

moving source fields. The two estimates are shifted from one another with respect 

to the stationary value of the wavenumbers as indicated by the black lines. Using 

the full aperture and sampling the range every 5 meters, estimates of the shifted 

wavenumbers were obtained. Values of horizontal wavenumbers for the first two 

modes were then estimated as the average value of the estimates from the sources of 

opposing motion. The estimated wavenumbers compare very favorable with the true 

values for the given environment as given by KRAKEN. Group velocities were also 

determined which also compare well to the expected values as shown in table 5.3. The 
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Figure 5-31: 50 Hz synthetic pressure fields generated for moving source analysis. 
SNR is 40 dB. Source speeds were 10 m/s. 

results from this experiment suggest that the wavenumber differencing technique used 

to estimate discrete wavenumbers for sources moving in opposing directions over the 

same environment is quite effective. Estimates of wavenumbers and group velocities 

agreed well with the true values. Relative to the MOMAX experiments, that had a 

typical source velocity of 2 m/s, the numerical results are shown for a high source 

speed in order to emphasize the observed wavenumber shift and reduce errors in the 

measurement of the wavenumber differences. However, the numerical experiment 

was also conducted for a source speed of 2 m/s and yielded a small degradation in 

the measurement of the group velocity of the first mode which was estimated as 

1478 m/s, or a 1.3 % difference from the true value. These results indicate that 

the wavenumber differencing technique shows promise for measuring modal group 

velocity and merits further study both numerically and experimentally. In particular, 
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Figure 5-32: Spectral estimates for moving source data with stationary values of 
horizontal wavenumbers indicated by dashed line. Source speed was 10 m/s 

for an experimental study, careful attention should be given to reducing errors in 

the wavenumber measurements. Much could be done in this regard by designing an 

experiment where the source is constrained to move out and back over exactly the 

same range-independent environment where the water column is well mixed and the 

sound speed is constant. 

5.6    Gelfand-Levitan Results 

Before leaving the analysis chapter, the Gelfand-Levitan method is considered in light 

of some of the practical aspects of making real ocean acoustic measurements. There 

are three issues in particular that affect how real measurements impact the applica- 

tion of the Gelfand-Levitan method. The first issue relates to the assumption of no 

allowable density discontinuity across the potential layer interfaces. This condition is 

violated in almost any realistic waveguide, where a density jump typically occurs at 

the water-bottom interface. It will be shown that this issue can be resolved through 
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application of an impedance matching condition applied at the boundary. The second 

issue is related to the integration interval in wavenumber space of the point source 

spectrum to determine the Fourier transform of the reflection coefficient. As derived, 

the integral is taken over all wavenumber space. However, in an experiment, it is only 

possible to measure real propagation angles which limits the wavenumber integral to 

±k0, where \k0\ is the minimum water wavenumber. The truncated integration inter- 

val has an impact on the transform of the reflection coefficient similar to the problems 

associated with short aperture spectral analysis. The impact of truncating the inte- 

gration interval on inversion using the Gelfand-Levitan approach will be discussed. A 

final study will address the issue of determining the plane-wave reflection coefficient 

from the shallow-water Green's function. It will be demonstrated that given an exact 

expression for the Green's function, the reflection coefficient can be extracted and 

sediment properties recovered. 

5.6.1    Effects of Density and Wavenumber Interval 

A numerical study was conducted to examine the effect of a density discontinuity at 

the water-bottom interface on inversion using the Gelfand-Levitan method. A deep 

water problem was considered with a sound velocity profile in the sediment consisting 

of a shallow minimum at 1 meter in depth, followed by a constant positive gradient 

with depth. The profile is described by, 

c(z)   =   1540-(1540-1515)2,     0<2<1 

c(z)   = 1515 + 0.972,    1 < z < 145 (5.14) 

c(z)   = 1665,    2 > 145, 

and is shown in figure 5-35 as the exact profile. The density in the water column 

was assumed to be 1 g/cm3 and in the sediment to be 1.5 g/cm3. For the given 

environment, the reflection coefficient was calculated using the modified Thomson- 

Haskell propagator matrix approach of Mook [52]. 
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Figure 5-33: Reflection Coefficient at 20 Hz with and without density discontinuity 
at water-bottom interface. 

To address the density discontinuity, an impedance matching condition was ap- 

plied at the water-bottom interface. This condition is presented in Tolstoy and 

Clay [80] and gives a means for expressing the reflection coefficient just below the 

interface where the discontinuity occurs. 

R- 
pikzo(l + R+) - p0kzl{l - R+) 
pikz0(l + R+) + p0kzi(l - R+)' 

(5.15) 

Here i?_ is the reflection coefficient just below the interface, and R+ is the reflection 

coefficient just above the interface. The reflection coefficients determined using the 

Thomson-Haskell method both with and without the density jump are shown in 

figure 5-33. The effect of the density jump is evident in the magnitude plot where the 

reflection coefficient does not go to zero for large kz. Using the impedance matching 

condition, the reflection coefficient determined just below the interface matches that 

for no discontinuity and approaches zero as required by the Gelfand-Levitan method. 
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The Fourier transform of the reflection coefficient as a real function of depth 

and is plotted in figure 5-34 both with and without the effects of the density jump. 

The effect of the jump discontinuity is to impart an extra oscillation in the result 

at the upper depths that causes an offset from the continuous density case at the 

deeper depths. The Fourier transform results were used as input data to the Gelfand- 

Levitan equation to invert for the sound velocity in the sediment. Figure 5-35 shows 

the results for several cases. The input profile is shown in the background with the 

Merab [50] result plotted directly on top of it. This result is from the corrected 

reflection coefficient shown above where the wavenumber integral to determine the 

Fourier transform was taken out to 10 times the water wavenumber. The highly 

oscillating result shows the effect of not accounting for the density discontinuity. The 

final two results are for a reflection coefficient with no density jump and with the 

impedance matching condition applied where the wavenumber integral was truncated 

at k0. This result shows the impact of truncating the wavenumber integral when 

taking the Fourier transform to have the greatest effect at large depths. 

5.6.2    Shallow-water Exact Inversion 

The final numerical experiment was simply a test to check that it was possible de- 

termine the reflection coefficient from the shallow-water Green's function using the 

relationship given by (2.14). It was thought that the poles in the Green's function 

might make the expression difficult to evaluate. This was tested using the shallow- 

water Green's function determined for the Pekeris waveguide illustrated in figure 

5-36. This waveguide was chosen from an example given in Jensen et al. [41] with 

a frequency of 20 Hz, source depth = 36 m, receiver depth = 46 m, and sound ve- 

locities given in the figure. The Green's function was determined from the exact 

expression for the reflection coefficient for a halfspace and compared to the results 

of OASES [72] and KRAKEN [59] as shown in figure 5-37. The agreement was good 

and the reflection coefficient was determined and plotted as a function of kz in fig- 
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Figure 5-34: Fourier transform of reflection coefficient with and without density dis- 
continuity. 
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Figure 5-35: Comparison of inferred sound speed profile in sediment using the 
Gelfand-Levitan method. Results are shown with and without density discontinu- 
ity and for truncated wavenumber integrals. 
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Pekeris Waveguide Model 
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Figure 5-36: Pekeris environment used to calculate shallow water Green's function. 

ure 5-38 where the density jump has been accounted for. The Fourier transform of 

the reflection coefficient and the resulting inversion are shown in figures 5-39 and 

5-40. Good agreement is shown between the inversion and the input model. This 

demonstrates that a measure of the shallow-water Green's function might be used for 

determining the reflection coefficient for exact inversion. Work is in process for using 

these methods on Green's functions determined for real data in deep water [32]. The 

method has not been applied to shallow water data at this point. 
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Figure 5-37:  Exact Green's function for Pekeris problem compared to OASES and 
KRAKEN. 
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Figure 5-38: Reflection coefficient determined from shallow-water Green's function. 
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Figure 5-39: Fourier transform of Pekeris reflection coefficient with effect of density 
discontinuity removed. 
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for the Pekeris problem in figure 5-36. 
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Chapter 6 

Summary and Conclusions 

In this thesis, the relationship between the spectrum of a point source acoustic field 

and the sediment properties of a shallow-water waveguide was described. Adiabatic 

mode theory was then used as a guide to illustrate how modes adapt to the local prop- 

erties of the waveguide. This was demonstrated using synthetic data for a waveguide 

with properties that varied in three dimensions. The resulting modal maps could 

used as input data to infer local waveguide properties. 

As part of the ONR/SPAWAR inversion techniques workshop, synthetic data were 

provided for analysis. For TC3, the seafloor was flat and the sediment properties 

varied with range. It was demonstrated that detection of range-variability in the 

sediment using wavenumber analysis required high-resolution methods to fully resolve 

closely spaced wavenumbers in the local spectra. A high-resolution method based on 

autoregressive spectral estimation was described and characterized for identifying 

local modal content using short-aperture data. The high-resolution estimator was 

then used to examine wavenumber content for a waveguide including sound speed 

perturbations in the water column due to internal waves. 

An experimental method for measuring three-dimensional acoustic fields was de- 

scribed for use in extracting spatially-varying wavenumber content. The resulting 

measurements provided data on synthetic aperture horizontal arrays of arbitrary 
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shape determined by the source and receiver motions. The full 2-D horizontal arrays 

were sparsely populated requiring that data be mapped to a range grid and analyzed 

using methods based on the zeroth-order Hankel transform. Modal eigenvalues were 

extracted from select pieces of data and used as input data for perturbative inversion. 

It was shown that interpretation of the wavenumber spectra must take into account 

source/receiver motions. In particular, a Doppler shift in the spectrum was observed 

for an experiment where the source was moving with a constant velocity. 

In addition to methods and analysis based on perturbative inversion methods, the 

Gelfand-Levitan method was discussed as a means for geoacoustic inversion. The re- 

lationship between the point-source spectrum and the plane-wave reflection coefficient 

of the water-bottom sediment was discussed. It was shown that the full spectrum, 

including the discrete values, could be used to determine the reflection coefficient for 

the shallow-water case. A simple method was demonstrated to account for the density 

jump at the water-bottom interface. Finally, the effect of using wavenumber content 

corresponding to only real angles of propagation was examined. This work suggests 

the potential use of MOMAX type data for doing exact geoacoustic inversion. 

6.1    Conclusions 

Much of this thesis work was focused on a means to provide data for doing pertur- 

bative geoacoustic inversion for spatially varying waveguides. It was demonstrated 

that a tool was necessary for extracting the discrete wavenumber spectrum for short- 

aperture data. An autoregressive spectral estimator was examined for use as a 

wavenumber estimator. It was demonstrated that the estimator performed well rel- 

ative to other high-resolution estimators for determining the frequency content of a 

signal with noise. The same analysis was applied to determine wavenumber content 

for a synthetic acoustic field having known eigenvalues with similar results. An ad- 

vantage over the other methods, based on eigen-decomposition, is that no a priori 
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information regarding the signal being analyzed is required, such as the number of 

propagating modes. For the range-dependent inversion workshop TC3, it was shown 

that a reduction in aperture of approximately two could be used to resolve and ex- 

tract modal content. It was shown that the location and shape of an intrusion in the 

sediment could be determined exactly. This result is particularly noteworthy in that 

for the inversion workshop, it was the only method capable of determining the nature 

of the intrusion in the sediment. 

In the study of internal wave effects on wavenumber estimates, it was observed 

that the sound speed perturbations in the water column do not negatively impact the 

detection of propagating modes. Although mode coupling is observed when compared 

to the unperturbed sound speed, the effect is to transfer energy to modes which are 

consistent with the boundary conditions of the waveguide. The net effect appears 

to be that mode coupling yields more information which might be used in the per- 

turbative inverse algorithm, i.e., modes that may not otherwise be excited are now 

identified. 

For the MOMAX experiments described, it was shown that the synthetic apertures 

created by the drifting GPS navigated buoys were of very high quality. Relative source 

and receiver ranges and range rates could be determined directly from the phase 

measurements. For the single-mode experiment, agreement was obtained between the 

AR estimator and the phase derivative for examining the range evolution of horizontal 

wavenumber for the propagating mode. For a case where the aperture opened along 

a radial, wavenumber estimates were used as input data for perturbative inversion. 

The resulting sediment sound velocity profile was consistent with a sandy sediment 

as expected for the region. Wavenumber-based inversion was also performed for a 

moving source/receiver configuration. The field determined from the profile resulting 

from the extracted wavenumbers matched the data quite well. Although the moving 

source/receiver configuration made it difficult to assign the inversion results to a 

specific geographic location, the results suggest that wavenumber analysis techniques 
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as a means for generating transmission loss curves for rapid assessment in situations 

where source and receiver positions are in constant motion. Related to this result was 

the observation that wavenumber estimates where shifted for an experiment where the 

source traversed the same local environment along an outgoing and incoming track. 

It was shown that a better estimate of the true wavenumbers could be obtained by- 

correcting for the Doppler shift in the spectrum due to the source motion. From this 

analysis, a method was suggested from which modal group velocity could be estimated 

from the observed Doppler shift for a moving source. The results of a numerical study 

based on wavenumber estimates for a modal field with shifted eigenvalues verified 

these results and suggests further experimental work. 

Finally, the numerical studies using the Gelfand-Levitan method suggest potential 

use of MOMAX type data for performing exact geoacoustic inversions. It was shown 

that for wavenumbers corresponding to real angles of propagation, inversion results 

could be obtained to a depth of one or two wavelengths in the sediment. It was 

shown that the density jump at the water-bottom interface could be accommodated 

by requiring a single point measurement of the density at the interface. It was also 

shown numerically that the shallow-water, depth-dependent Green's function could 

be used to determine the plane-wave reflection coefficient at the bottom for use in 

the Gelfand-Levitan equation. 

6.2    Suggestions for Future Work 

The autoregressive wavenumber estimator used for this work provides reliable wavenum- 

ber estimates only for regions of local waveguide invariability. In the case of a constant 

bathymetric slope where the sediment properties follow the bathymetry, the require- 

ment of local invariability is a major deficiency. One way wavenumber estimates 

might be improved in this case is through the implementation of a time-varying au- 

toregressive estimator (TVAR). The TVAR estimator allows for the coefficients of 
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the parametric signal model to be time-varying, or in this application, range-varying. 

The effects of internal waves on wavenumber estimates is another area that deserves 

further work. The limits of wavenumber estimation in the presence of stronger and 

stronger internal wave fields should be studied. 

A related area for research is the effect on wavenumber estimates due to the 

shape of intrusions in the sediment for a waveguide with constant bathymetry. For 

the inversion workshop, a rectangular-shaped intrusion was identified. An interesting 

study would be the identification of other regular shaped intrusions such as a semi- 

circle or triangle. This might complement work relating to the recent GeoClutter [56] 

experiments, where discrete features in the sediment are studied as contributors to 

both propagating and scattered acoustic fields. This work might also provide a means 

to determine range dependent features of the environment which could be used along 

with the global search methods for doing geoacoustic inversion. 

From the experimental work, it was shown that the measured spectra are influ- 

enced by the source and receiver motions. A method was described for inferring 

the group velocity from the shifted wavenumber spectra. An experiment designed 

to specifically measure shifted spectra for group velocity measurements is suggested 

where the source is towed at a high rate of speed to maximize the Doppler shift and 

increase the observed wavenumber differences for increased fidelity in the difference 

measurements. A similar experiment might also be designed to provide data along a 

radial at constant bearing for a long synthetic aperture to provide data for estimating 

the plane-wave reflection coefficient from the shallow-water Green's function. This 

would require additional work in the estimation of the Green's function from data. In 

this thesis work, the far-field approximation to the Hankel function was used, where 

an exact Hankel transform should be employed for the best estimate of the total 

spectrum. 
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